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Lecture 17: Transactional Memories I

Papers:
• A Scalable Non-Blocking Approach to Transactional
Memory, HPCA’07, Stanford

• The Common Case Transactional Behavior of
Multi-threaded Programs, HPCA’06, Stanford

• Characterization of TCC on Chip Multiprocessors,
PACT’05, Stanford
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TM Overview

• Recall the basic TM implementation:
Every transaction maintains read-set and write-set
Writes are not propagated until commit time
At commit, acquire permission to commit from a
central arbiter (no parallel commit for now)
Send write-set to other nodes – if the write-set
intersects with the node’s read-set, the node’s
transaction is aborted and re-started
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Implementation Issues

• Design details:
On attempting a write (the Tx is not yet ready to
commit), must obtain the most recently committed
version of the block in read-only state (the block is
not yet part of the read-set, though)
At the time of commit, either write-thru to memory
(there is no M state in the coherence protocol), or
move from S to M state (write-back policy) (a dirty line
can’t handle speculative writes, though)

• For parallel commits:
is an ordering implied between these transactions?
is a write-set/read-set conflict allowed?
is a read-set/write-set conflict allowed?
is a write-set/write-set conflict allowed?
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Parallel Commits I

• Ordering is implied: a programmer believes that a transaction
executes “in isolation”

• Write-set/Read-set conflict should cause an abort: hence, the
second transaction must:

confirm there is no conflict before propagating writes
or propagate writes in a manner that does not affect
correctness (can’t employ write-thru or write-update, can’t respond
to others’ read requests / or must keep track of dependences)

• Read-set/Write-set conflict need not cause an abort: the ordering
should indicate that the first transaction need not abort

• Write-set/Write-set conflict need not cause an abort: a mechanism is
required to ensure that everyone sees writes in the same correct order

* Reading your own write is truly not a problem, but since info is
maintained at block granularity, the block is included in the read-set
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Parallel Commits II

• Conflicting writes must be merged correctly (note that the
writes may be to different words in the same line)

• If we’re not checking early for Write-set/Read-set conflicts,
the first transaction must inform the next transaction after
it is done (received all acks)

• Consistency model: two parallel transactions are sending
their write-sets to other nodes over unordered networks:

Just as we saw for SC, a reader must not proceed
unless everyone has seen the write (the entire
transaction need not have committed)
Writes to a location must be serialized
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The Stanford Approach

• Transactions are ordered (by contacting a central agent)

• A transaction first engages in validation and proceeds 
with commit only if it is guaranteed to not have any conflicts

Write-set/Read-set conflicts are not allowed
(Ti checks its read-set directories and proceeds only
after those directories have seen previous writes)

Read-set/Write-set conflicts are allowed
(Ti will ignore write notices from transactions >i)
Write-set/Write-set conflicts are allowed
To maintain write serialization, Ti confirms that a
directory is done with all transactions <i
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Algorithm

• Probe your write-set to see if it is your turn to write
(helps serialize writes)

• Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

• Mark your write-set (helps hide latency)

• Probe your read-set to see if previous writes have
completed

• Validation is now complete – send the actual commit
message to the write set
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Example

P1

D:  X Z

P2

D:  Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 1
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Example

P1

D:  X Z

P2

D:  Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 1

TID=1

TID=2
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Example

P1

D:  X Z

P2

D:  Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1
TID=2

Probe to write-set to
see if it can proceed

No writes here.
I’m done with you.

P2 sends the same set of probes/notifications
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Example

P1

D:  X Z

P2

D:  Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1 TID=2

Must wait
my turn

Can go ahead
with my wr

Mark X

Mark messages are hiding the latency for the subsequent commit
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Example

P1

D:  X Z

P2

D:  Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1 TID=2

Keep probing
and waiting

Probe read set and
make sure they’re done
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Example

P1

D:  X Z

P2

D:  Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 2 NS: 3

TID=1 TID=2

Keep probing
and waiting

Commit

Invalidate sharers;
May cause aborts
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Example

P1

D:  X Z

P2

D:  Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 2 NS: 3

TID=1 TID=2

P2: Probe finally successful.
Can mark Z.
Will then check read-set.
Then proceed with commit
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Algorithm

• Probe your write-set to see if it is your turn to write
(helps serialize writes)

• Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

• Mark your write-set (helps hide latency)

• Probe your read-set to see if previous writes have
completed

• Validation is now complete – send the actual commit
message to the write set
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Issues

• The protocol requires many messages: enables latency
hiding for the commit process, though

• There may be high directory locality for a NUMA machine,
but possibly not for a single large-scale CMP
with a directory-based cache coherence protocol

• To support a write-back cache policy, a new 
non-speculative cache is introduced (so that a transaction
does not speculatively over-write a dirty line)
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Evaluation
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Results

Applications with small transactions
suffer more from commit latency
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Results
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Transaction Characteristics

• An evaluation of
35 multi-threaded
programs

Transaction length

Sizes of read
and write sets
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Transaction Characteristics
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Title

• Bullet
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