
1

Lecture 17: Transactional Memories I

Papers:
• A Scalable Non-Blocking Approach to Transactional
Memory, HPCA’07, Stanford

• The Common Case Transactional Behavior of
Multi-threaded Programs, HPCA’06, Stanford

• Characterization of TCC on Chip Multiprocessors,
PACT’05, Stanford

2

TM Overview

• Recall the basic TM implementation:
Every transaction maintains read-set and write-set
Writes are not propagated until commit time
At commit, acquire permission to commit from a
central arbiter (no parallel commit for now)
Send write-set to other nodes – if the write-set
intersects with the node’s read-set, the node’s
transaction is aborted and re-started

3

Implementation Issues

• Design details:
On attempting a write (the Tx is not yet ready to
commit), must obtain the most recently committed
version of the block in read-only state (the block is
not yet part of the read-set, though)
At the time of commit, either write-thru to memory
(there is no M state in the coherence protocol), or
move from S to M state (write-back policy) (a dirty line
can’t handle speculative writes, though)

• For parallel commits:
is an ordering implied between these transactions?
is a write-set/read-set conflict allowed?
is a read-set/write-set conflict allowed?
is a write-set/write-set conflict allowed?

4

Parallel Commits I

• Ordering is implied: a programmer believes that a transaction
executes “in isolation”

• Write-set/Read-set conflict should cause an abort: hence, the
second transaction must:

confirm there is no conflict before propagating writes
or propagate writes in a manner that does not affect
correctness (can’t employ write-thru or write-update, can’t respond
to others’ read requests / or must keep track of dependences)

• Read-set/Write-set conflict need not cause an abort: the ordering
should indicate that the first transaction need not abort

• Write-set/Write-set conflict need not cause an abort: a mechanism is
required to ensure that everyone sees writes in the same correct order

* Reading your own write is truly not a problem, but since info is
maintained at block granularity, the block is included in the read-set

5

Parallel Commits II

• Conflicting writes must be merged correctly (note that the
writes may be to different words in the same line)

• If we’re not checking early for Write-set/Read-set conflicts,
the first transaction must inform the next transaction after
it is done (received all acks)

• Consistency model: two parallel transactions are sending
their write-sets to other nodes over unordered networks:

Just as we saw for SC, a reader must not proceed
unless everyone has seen the write (the entire
transaction need not have committed)
Writes to a location must be serialized

6

The Stanford Approach

• Transactions are ordered (by contacting a central agent)

• A transaction first engages in validation and proceeds
with commit only if it is guaranteed to not have any conflicts

Write-set/Read-set conflicts are not allowed
(Ti checks its read-set directories and proceeds only
after those directories have seen previous writes)

Read-set/Write-set conflicts are allowed
(Ti will ignore write notices from transactions >i)
Write-set/Write-set conflicts are allowed
To maintain write serialization, Ti confirms that a
directory is done with all transactions <i

7

Algorithm

• Probe your write-set to see if it is your turn to write
(helps serialize writes)

• Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

• Mark your write-set (helps hide latency)

• Probe your read-set to see if previous writes have
completed

• Validation is now complete – send the actual commit
message to the write set

8

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 1

9

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 1

TID=1

TID=2

10

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1
TID=2

Probe to write-set to
see if it can proceed

No writes here.
I’m done with you.

P2 sends the same set of probes/notifications

11

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1 TID=2

Must wait
my turn

Can go ahead
with my wr

Mark X

Mark messages are hiding the latency for the subsequent commit

12

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 1 NS: 3

TID=1 TID=2

Keep probing
and waiting

Probe read set and
make sure they’re done

13

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 2 NS: 3

TID=1 TID=2

Keep probing
and waiting

Commit

Invalidate sharers;
May cause aborts

14

Example

P1

D: X Z

P2

D: Y

TID
Vendor

Rd X
Wr X

Rd Y
Wr Z

NS: 2 NS: 3

TID=1 TID=2

P2: Probe finally successful.
Can mark Z.
Will then check read-set.
Then proceed with commit

15

Algorithm

• Probe your write-set to see if it is your turn to write
(helps serialize writes)

• Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

• Mark your write-set (helps hide latency)

• Probe your read-set to see if previous writes have
completed

• Validation is now complete – send the actual commit
message to the write set

16

Issues

• The protocol requires many messages: enables latency
hiding for the commit process, though

• There may be high directory locality for a NUMA machine,
but possibly not for a single large-scale CMP
with a directory-based cache coherence protocol

• To support a write-back cache policy, a new
non-speculative cache is introduced (so that a transaction
does not speculatively over-write a dirty line)

17

Evaluation

18

Results

Applications with small transactions
suffer more from commit latency

19

Results

20

Transaction Characteristics

• An evaluation of
35 multi-threaded
programs

Transaction length

Sizes of read
and write sets

21

Transaction Characteristics

22

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

