
1

Lecture 10: Directory-Based Examples II

• Topics: SGI Origin wrap-up, Sequent NUMA-Q case study



2

Serialization

• Note that the directory serializes writes to a location, but
does not know when a write/read has completed at any
processor

• For example, a read reply may be floating on the network
and may reach the requestor much later – in the meantime,
the directory has already issued a number of invalidates,
the invalidate is overwritten when the read reply finally
shows up – hence, each node must buffer its requests
until outstanding requests have completed



3

Directory Structure

• The system supports either a 16-bit or 64-bit directory
(fixed cost)

• For small systems, the directory works as a full bit
vector representation

• For larger systems, a coarse vector is employed – each
bit represents p/64 nodes

• State is maintained for each node, not each processor –
the communication assist broadcasts requests to both
processors



4

Page Migration

• Each page in memory has an array of counters to detect
if a page has more misses from a node other than home

• When a page is moved to a different physical memory
location, the virtual address remains the same, but the
page table and TLBs must be updated

• To reduce the cost of TLB shootdown, the old page sets
its directory state to poisoned – if a process tries to access
this page, the OS intervenes and updates the translation



5

Sequent NUMA-Q

• Employs a flat cache-based directory protocol between nodes –
IEEE standard SCI (Scalable Coherent Interface) protocol

• Each node is a 4-way SMP with a bus-based snooping protocol

• The communication assist includes a large “remote access cache”
– the directory protocol tries to keep the remote caches coherent,
while the snooping protocol ensures that each processor cache is
kept coherent with the remote access cache

C C C C

Local
Mem

CA

RAC Network

P P P P



6

Directory Structure

• The physical address identifies the home node – the home
node directory stores a pointer to the head of a linked list –
each cache stores pointers to the next and previous sharer

• A main memory block can be in three directory states:
� Home: (similar to unowned) the block does not exist

in any remote access cache (may be in the home
node’s processor caches, though)

� Fresh: (similar to shared) read-only copies exist in
remote access caches and memory copy is up-to-date

� Gone: (similar to exclusive) writeable copy exists in
some remote cache



7

Cache Structure

• 29 stable states and many more pending/busy states!

• The stable states have two descriptors:
� position in linked list: ONLY, HEAD, TAIL, MID
� state within cache: dirty, clean, fresh, etc.

• SCI defines and implements primitive operations to
facilitate linked list manipulations:
� List construction: add a new node to the list head
� Rollout: remove a node from a list
� Purging: invoked by the head to invalidate all

other nodes



8

Handling Read Requests

• On a read miss, the remote cache sets up a block in busy
state and other requests to the block are not entertained

• The requestor sends a “list construction request” to the
home and the steps depend on the directory state:
� Home: state updated to fresh, head updated to

requestor, data sent to requestor, state at requestor
is set to ONLY_FRESH

� Fresh: head updated to requestor, home responds
with data and pointer to old head, requestor moves to
a different busy state, sends list construction request
to old head, old head moves from HEAD_FRESH to
MID_VALID, sends ack, requestor � HEAD_FRESH



9

Handling Read Requests II

� Gone: home does not reply with data, it remains in Gone
state, sends old head pointer to requestor, requestor
moves to a different busy state, asks old head for data
and “list construction”, old head moves from HEAD_DIRTY
to MID_VALID, returns data, requestor moves to
HEAD_DIRTY (note that HEAD_DIRTY does not mean
exclusive access; the head can write without talking to
the home, but sharers must be invalidated)

� Home keeps forwarding requests to head even if head
is busy – this results in a pending linked list that is
handled as transactions complete



10

Handling Write Requests

• At all times, the head of a list is assumed to have the
latest copy and only the head is allowed to write

• The writer starts by moving itself to the head of the list;
actions depend on the state in the cache:

� HEAD_DIRTY: the home is already in GONE state,
so home is not informed, sharing list is purged (each
list element invalidates itself and informs the
requestor of the next element – simple, but slow –
works well for small invalidation sizes)



11

Handling Write Requests II

� HEAD_FRESH: home directory is updated from FRESH
to GONE, sharing list is purged; if the home directory is
not in FRESH state, some other node’s request is in
flight – the requestor will have to move to the head again
and retry

� ONLY_DIRTY: the write happens without generating any
interconnect traffic



12

Writeback & Replacement

• Replacements are no longer “quiet” as the linked lists
have to be updated – the “rollout” operation is used

• To rollout, a node must set itself to pending, inform the
neighbors, and set itself to invalid – to prevent deadlock
in the case of two neighbors attempting rollout, the node
closer to the tail is given priority

• If the node is the head, it makes the next element the
head and informs home



13

Writeback & Replacement II

• If the head is attempting a rollout, it sends a message home,
but the home is pointing to a different head: the old head
will eventually receive a request from the new head – at
this point, the writeback is complete, and the new head
is instead linked with the next node

• To reduce buffering needs, the writeback happens before
the new block is fetched



14

Serialization

• The home serves as the point of serialization – note that
requests are almost never NACKed – requests are 
usually re-directed to the current head – helps avoid
race conditions

• Since requests get queued in a pending list and buffers
are rarely used, the protocol is less prone to 
starvation, unfairness, deadlock, and livelock problems



15

Hierarchical Snooping

Coherence Monitor:
• Tracks remotely allocated, locally cached data (by using a remote access cache)
• Tracks locally allocated, remotely cached data (by using a local state monitor)

P

C

P

C

Coherence
Monitor

Mem

P

C

P

C

Coherence
Monitor

Mem

B1 B1

B2



16

Title

• Bullet


