
1

Lecture 7: Implementing Cache Coherence

• Topics: implementation details



2

Implementing Coherence Protocols

• Correctness and performance are not the only metrics

• Deadlock: a cycle of resource dependencies, where each
process holds shared resources in a non-preemptible
fashion

• Livelock: similar to deadlock, but transactions continue in
the system without each process making forward progress

• Starvation: an extreme case of unfairness



3

Basic Implementation

• Assume single level of cache, atomic bus transactions

• It is simpler to implement a processor-side cache
controller that monitors requests from the processor and
a bus-side cache controller that services the bus

• Both controllers are constantly trying to read tags
� tags can be duplicated (moderate area overhead)
� unlike data, tags are rarely updated
� tag updates stall the other controller



4

Reporting Snoop Results

• Uniprocessor system: initiator places address on bus, all
devices monitor address, one device acks by raising a
wired-OR signal, data is transferred

• In a multiprocessor, memory has to wait for the snoop
result before it chooses to respond – need 3 wired-OR
signals: (i) indicates that a cache has a copy, (ii) indicates
that a cache has a modified copy, (iii) indicates that the
snoop has not completed

• Ensuring timely snoops: the time to respond could be
fixed or variable (with the third wired-OR signal), or the
memory could track if a cache has a block in M state



5

Non-Atomic State Transitions

• Note that a cache controller’s actions are not all atomic: tag
look-up, bus arbitration, bus transaction, data/tag update

• Consider this: block A in shared state in P1 and P2; both
issue a write; the bus controllers are ready to issue an
upgrade request and try to acquire the bus; is there a
problem?

• The controller can keep track of additional intermediate
states so it can react to bus traffic (e.g. S�M, I�M, I�S,E)

• Alternatively, eliminate upgrade request; use the shared
wire to suppress memory’s response to an exclusive-rd



6

Serialization

• Write serialization is an important requirement for 
coherence and sequential consistency – writes must be
seen by all processors in the same order

• On a write, the processor hands the request to the cache
controller and some time elapses before the bus
transaction happens (the external world sees the write)

• If the writing processor continues its execution after
handing the write to the controller, the same write order
may not be seen by all processors – hence, the processor
is not allowed to continue unless the write has completed



7

Livelock

• Livelock can happen if the processor-cache handshake
is not designed correctly

• Before the processor can attempt the write, it must
acquire the block in exclusive state

• If all processors are writing to the same block, one of
them acquires the block first – if another exclusive request
is seen on the bus, the cache controller must wait for the
processor to complete the write before releasing the block
-- else, the processor’s write will fail again because the
block would be in invalid state



8

Atomic Instructions

• A test&set instruction acquires the block in exclusive
state and does not release the block until the read and
write have completed

• Should an LL bring the block in exclusive state to avoid
bus traffic during the SC?

• Note that for the SC to succeed, a bit associated with
the cache block must be set (the bit is reset when a
write to that block is observed or when the block is evicted)

• What happens if an instruction between the LL and SC
causes the LL-SC block to always be replaced?



9

Multilevel Cache Hierarchies

• Ideally, the snooping protocol employed for L2 must be
duplicated for L1 – redundant work because of blocks
common to L1 and L2

• Inclusion greatly simplifies the implementation



10

Maintaining Inclusion

• Assuming equal block size, if L1 is 8KB 2-way and L2 is
256KB 8-way, is the hierarchy inclusive? (assume that an
L1 miss brings a block into L1 and L2)

• Assuming equal block size, if L1 is 8KB direct-mapped
and L2 is 256KB 8-way, is the hierarchy inclusive?

• To maintain inclusion, L2 replacements must also evict
relevant blocks in L1



11

Intra-Hierarchy Protocol

• Some coherence traffic needs to be propagated to L1; 
likewise, L1 write traffic needs to be propagated to L2

• What is the best way to implement the above? More
traffic? More state? 

• In general, external requests propagate upward from L3 to
L1 and processor requests percolate down from L1 to L3

• Dual tags are not as important as the L2 can filter out
bus transactions and the L1 can filter out processor
requests



12

Split Transaction Bus

• What would it take to implement the protocol correctly
while assuming a split transaction bus?

• Split transaction bus: a cache puts out a request, releases
the bus (so others can use the bus), receives its response
much later

• Assumptions:
� only one request per block can be outstanding
� separate lines for addr (request) and data (response)



13

Split Transaction Bus

Proc 1

Cache

Proc 2

Cache

Proc 3

Cache

Request lines

Response lines



14

Design Issues

• When does the snoop complete? What if the snoop takes
a long time?

• What if the buffer in a processor/memory is full? When
does the buffer release an entry? Are the buffers identical?

• How does each processor ensure that a block does not
have multiple outstanding requests?

• What determines the write order – requests or responses?



15

Design Issues II

• What happens if a processor is arbitrating for the bus and
witnesses another bus transaction for the same address?

• If the processor issues a read miss and there is already a
matching read in the request table, can we reduce bus
traffic?



16

Shared Cache Designs

• There are benefits to sharing the first level cache among
many processors (for example, in a CMP):
� no coherence protocol
� low cost communication between processors
� better prefetching by processors
� working set overlap allows shared cache size to be

smaller than combined size of private caches
� improves utilization

• Disadvantages:
� high contention for ports
� longer hit latency (size and proximity)
� more conflict misses



17

TLBs

• Recall that a TLB caches virtual to physical page 
translations

• While swapping a page out, can we have a problem in
a multiprocessor system?

• All matching entries in every processor’s TLB must be
removed

• TLB shootdown: the initiating processor sends a special
instruction to other TLBs asking them to invalidate a page
table entry



18

Case Study: SGI Challenge

• Supports 18 or 36 MIPS processors

• Employs a 1.2 GB/s 47.6 MHz system bus (Powerpath-2)

• The bus has 256-bit-wide data, 40-bit-wide address, plus
33 other signals (non multiplexed)

• Split transaction, supporting eight outstanding requests

• Employs the MESI protocol by default – also supports
update transactions



19

Processor Board

• Each board has four processors (to reduce the number
of slots on the bus from 36 to 9)

• A-chip has request tables, arbitration logic, etc.

MIPS

L2

CCTags

A-chip D-chip

MIPS

L2

CCTags

MIPS

L2

CCTags

MIPS

L2

CCTags



20

Latencies

• 75ns for an L2 cache hit

• 300ns for a cache miss to percolate down to the A-chip

• Additional 400ns for the data to be delivered to the D-chips
across the bus (includes 250ns memory latency)

• Another 300ns for the data to reach the processor

• Note that the system bus can accommodate 256 bits of
data, while the CC-chip to processor interface can handle
64 bits at a time



21

Sun Enterprise 6000

• Supports 30 UltraSparcs

• 2.67 GB/s 83.5 MHz Gigaplane system bus

• Non multiplexed bus with 256 bits of data, 41 bits of
address, and 91 bits of control/error correction, etc.

• Split transaction bus with up to 112 outstanding requests

• Each node speculatively drives the bus (in parallel with
arbitration)

• L2 hits are 40 ns, memory access is 300 ns



22

Title

• Bullet


