
1

Lecture 4: Update Protocol

• Topics: update protocol, evaluating coherence

2

Update Protocol (Dragon)

• 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

• Write-back update is not the same as write-through –
on a write, only caches are updated, not memory

• Goal: writes may usually not be on the critical path, but
subsequent reads may be

3

4 States

• No invalid state

• Modified and Exclusive-clean as before: used when there
is a sole cached copy

• Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

• Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory – only one block can be in Sm state

• In reality, one state would have sufficed – more states
to reduce traffic

4

Design Issues

• If the update is also sent to main memory, the Sm
state can be eliminated

• If all caches are informed when a block is evicted, the
block can be moved from shared to M or E – this can
help save future bus transactions

• The wire used to determine exclusivity is especially
useful for an update protocol

5

Example

P1 P2
MSI MESI Dragon MSI MESI Dragon

• P1: Rd X
• P1: Wr X
• P2: Rd X
• P1: Wr X
• P1: Wr X
• P2: Rd X
• P2: Wr X

Total transfers:

6

Evaluating Coherence Protocols

• There is no substitute for detailed simulation – high
communication need not imply poor performance if
the communication is off the critical path – for example,
an update protocol almost always consumes more
bandwidth, but can often yield better performance

• An easy (though, not entirely reliable) metric – simulate
cache accesses and compute state transitions – each
state transition corresponds to a fixed amount of
interconnect traffic

7

State Transitions

843.62.300.0022.63M

2.24134.702.50.42S

1.000.0214.000.20E

0.0021.87000.64I

1.680.961.2500NP

MSEINPTo

From

--BusWBNot possibleBusWBBusWBM

BusUpgr--Not possible----S

----------E

BusRdXBusRdBusRd----I

BusRdXBusRdBusRd----NP

MSEINPTo

From

State transitions
per 1000 data

memory references
for Ocean

Bus actions
for each state

transition

NP – Not Present

8

Cache Misses

• Coherence misses: cache misses caused by sharing of
data blocks – true (two different processes access the
same word) and false (processes access different words
in the same cache line)

• False coherence misses are zero if the block size equals
the word size

• An upgrade from S to M is a new type of “cache miss” as
it generates (inexpensive) bus traffic

9

Block Size

• For most programs, a larger block size increases the
number of false coherence misses, but significantly
reduces most other types of misses (because of locality)
– a very large block size will finally increase conflict misses

• Large block sizes usually result in high bandwidth needs
in spite of the lower miss rate

• Alleviating false sharing drawbacks of a large block size:
� maintain state information at a finer granularity (in

other words, prefetch multiple blocks on a miss)
� delay write invalidations
� reorganize data structures and decomposition

10

Update-Invalidate Trade-Offs

• The best performing protocol is a function of sharing
patterns – are the sharers likely to read the newly
updated value? Examples: locks, barriers

• Each variable in the program has a different sharing
pattern – what can we do?

• Implement both protocols in hardware – let the
programmer/hw select the protocol for each page/block

• For example: in the Dragon update protocol, maintain
a counter for each block – an access sets the counter to
MAX, while an update decrements it – if the counter
reaches 0, the block is evicted

11

Title

• Bullet

