Lecture 4: Update Protocol

» Topics: update protocol, evaluating coherence

Update Protocol (Dragon)

 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

 Write-back update is not the same as write-through —
on a write, only caches are updated, not memory

» Goal: writes may usually not be on the critical path, but
subsequent reads may be

4 States

 No Invalid state

 Modified and Exclusive-clean as before: used when there
IS a sole cached copy

« Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

« Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory — only one block can be in Sm state

* In reality, one state would have sufficed — more states
to reduce traffic 3

Design Issues

o If the update is also sent to main memory, the Sm
state can be eliminated

e If all caches are informed when a block is evicted, the
block can be moved from shared to M or E — this can
help save future bus transactions

* The wire used to determine exclusivity is especially
useful for an update protocol

Example

e P1:
e P1:
e P2:
e P1:
e P1:
e P2:
e P2:

Total transfers:

Rd
Wr
Rd
Wr
Wr
Rd
Wr

XX X X X X X

MSI

P1
MESI

Dragon

MSI

P2
MESI

Dragon

Evaluating Coherence Protocols

* There is no substitute for detailed simulation — high
communication need not imply poor performance if
the communication is off the critical path — for example,
an update protocol almost always consumes more
bandwidth, but can often yield better performance

* An easy (though, not entirely reliable) metric — simulate
cache accesses and compute state transitions — each
state transition corresponds to a fixed amount of
Interconnect traffic

State Transitions

To NP I E S M NP — Not Present
From
NP 0) 0) 1.25 0.96 1.68 State transitions
| 0.64 0 0 1.87 | 0.002 | Perl1000data
memory references
E 0.20 0 14.0 0.02 1.00 for Ocean
S 0.42 2.5 0 134.7 2.24
M 2.63 0.002 0 2.3 843.6
To NP I E S M
From Bus actions
NP -- -- BusRd BusRd | BusRdX | for each state
| - - BusRd BusRd | BusRdX transition
E -- -- -- -- --
S -- -- Not possible -- BusUpgr
M BusWB | BusWB | Not possible | BusWB -- 7

Cache Misses

» Coherence misses: cache misses caused by sharing of
data blocks — true (two different processes access the
same word) and false (processes access different words
In the same cache line)

 False coherence misses are zero if the block size equals
the word size

* An upgrade from S to M is a new type of “cache miss” as
It generates (inexpensive) bus traffic

Block Size

e For most programs, a larger block size increases the
number of false coherence misses, but significantly
reduces most other types of misses (because of locality)

— a very large block size will finally increase conflict misses

» Large block sizes usually result in high bandwidth needs
In spite of the lower miss rate

* Alleviating false sharing drawbacks of a large block size:
» maintain state information at a finer granularity (in
other words, prefetch multiple blocks on a miss)
» delay write invalidations
» reorganize data structures and decomposition

Update-Invalidate Trade-Offs

* The best performing protocol is a function of sharing
patterns — are the sharers likely to read the newly
updated value? Examples: locks, barriers

e Each variable in the program has a different sharing
pattern — what can we do?

* Implement both protocols in hardware — let the
programmer/hw select the protocol for each page/block

e For example: in the Dragon update protocol, maintain
a counter for each block — an access sets the counter to
MAX, while an update decrements it — if the counter
reaches 0, the block is evicted 10

Title

e Bullet

11

