Lecture 21: Router Design

Papers:

• Power-Driven Design of Router Microarchitectures in On-Chip Networks, MICRO’03, Princeton
• A Gracefully Degrading and Energy-Efficient Modular Router Architecture for On-Chip Networks, ISCA’06, Penn-State
• ViChaR: A Dynamic Virtual Channel Regulator for Network-on-Chip Routers, MICRO’06, Penn-State
Router Pipeline

- Four typical stages:
 - RC routing computation: compute the output channel
 - VA virtual-channel allocation: allocate VC for the head flit
 - SA switch allocation: compete for output physical channel
 - ST switch traversal: transfer data on output physical channel

<table>
<thead>
<tr>
<th>Cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head flit</td>
<td>RC</td>
<td>VA</td>
<td>SA</td>
<td>ST</td>
<td>RC</td>
<td>VA</td>
<td>SA</td>
</tr>
<tr>
<td>Body flit 1</td>
<td>--</td>
<td>--</td>
<td>SA</td>
<td>ST</td>
<td>--</td>
<td>--</td>
<td>SA</td>
</tr>
<tr>
<td>Body flit 2</td>
<td>--</td>
<td>--</td>
<td>SA</td>
<td>ST</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Tail flit</td>
<td>--</td>
<td>--</td>
<td>SA</td>
<td>ST</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

STALL
Flow Control

• VC allocation: when the tail flit is sent, the router knows that the downstream VC is free (or will soon be); the VC is therefore assigned to the next packet and those flits carry the VCid with them; the two routers need not exchange signals to agree on the VCid

• Head-of-Line (HoL) blocking: a flit at the head of the queue blocks flits (belonging to a different packet) behind it that could have progressed... example: if a VC holds multiple packets because the upstream node assumed the previous packet was handled (as above)

• Flow control mechanisms:
 - Store-and-Forward: buffers/channels allocated per packet
 - Cut-through: buffers/channels allocated per packet
 - Wormhole: buffers allocated per flit; channels per packet
 - Virtual channel: buffers/channels allocated per flit
Data Points

• On-chip network’s power contribution
 in RAW (tiled) processor: 36%
 in network of compute-bound elements (Intel): 20%
 in network of storage elements (Intel): 36%
 bus-based coherence (Kumar et al. ’05): ~12%

• Contributors:
 RAW: links 39%; buffers 31%; crossbar 30%
 TRIPS: links 31%; buffers 35%; crossbar 33%
 Intel: links 18%; buffers 38%; crossbar 29%; clock 13%
Network Power

• Energy for a flit = $E_R \cdot H + E_{wire} \cdot D$
 $$= (E_{buf} + E_{xbar} + E_{arb}) \cdot H + E_{wire} \cdot D$$

 E_R = router energy
 E_{wire} = wire transmission energy
 E_{buf} = router buffer energy
 E_{xbar} = router crossbar energy
 E_{arb} = router arbiter energy

 H = number of hops
 D = physical Manhattan distance

• This paper assumes that $E_{wire} \cdot D$ is ideal network energy (assuming no change to the application and how it is mapped to physical nodes)

• Optimizations are attempted to E_R and H
Segmented Crossbar

(a) A 4×4 matrix crossbar.
(b) A 4×4 segmented cross-bar with 2 segments per line.

- By segmenting the row and column lines, parts of these lines need not switch → less switching capacitance (especially if your output and input ports are close to the bottom-left in the figure above)
- Need a few additional control signals to activate the tri-state buffers (~2 control signals, ~64 data signals)
- Overall crossbar power savings: ~15-30%
Cut-Through Crossbar

- Attempts to optimize the common case: in dimension-order routing, flits make up to one turn and usually travel straight.
- $2/3$rd the number of tristate buffers and $1/2$ the number of data wires.
- “Straight” traffic does not go thru tristate buffers.
- Some combinations of turns are not allowed: such as $E \rightarrow N$ and $N \rightarrow W$ (note that such a combination cannot happen with dimension-order routing).
- Crossbar energy savings of 39-52%; at full-load, with a worst-case routing algorithm, the probability of a conflict is $\sim 50\%$.
Write-Through Input Buffer

- Input flits must be buffered in case there is a conflict in a later pipeline stage.
- If the queue is empty, the input flit can move straight to the next stage: helps avoid the buffer read.
- To reduce the datapaths, the write bitlines can serve as the bypass path.
- Power savings are a function of rd/wr energy ratios and probability of finding an empty queue.
Express Channels

- Express channels connect non-adjacent nodes – flits traveling a long distance can use express channels for most of the way and navigate on local channels near the source/destination (like taking the freeway)

- Helps reduce the number of hops

- The router in each express node is much bigger now
Express Channels

- Routing: in a ring, there are 5 possible routes and the best is chosen; in a torus, there are 17 possible routes.

- A large express interval results in fewer savings because fewer messages exercise the express channels.
Results

- Uniform random traffic (synthetic)
- Write-thru savings are small
- Exp-channel network has half the flit size to maintain the same bisection-bandwidth as other models (express interval of 2)
- Baseline model power breakdown: link 44%, crossbar 33%, buffers 23%
- Express cubes also improve 0-load latency by 23% -- the others have a negligible impact on performance

![Graph showing power reduction](graph.png)

(c) 8x8 network power savings of 4 configurations.

Table 3. Average total network power savings (relative to net.base configuration).

<table>
<thead>
<tr>
<th></th>
<th>8x8 torus (random)</th>
<th>4x4 torus (random)</th>
<th>TRIPS traces</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.cut</td>
<td>22.4%</td>
<td>21.6%</td>
<td>20.4%</td>
</tr>
<tr>
<td>net_seg</td>
<td>7.2%</td>
<td>6.9%</td>
<td>6.6%</td>
</tr>
<tr>
<td>net_wrt</td>
<td>4.9%</td>
<td>4.5%</td>
<td>3.8%</td>
</tr>
<tr>
<td>net_exp</td>
<td>36.3%</td>
<td>27.2%</td>
<td>30.9%</td>
</tr>
<tr>
<td>net_all</td>
<td>44.9%</td>
<td>36.3%</td>
<td>37.9%</td>
</tr>
</tbody>
</table>
Conventional Router

Slide taken from presentation at OCIN’06
The RoCo Router
ViChaR

• Router buffers are a bottleneck:
 ▪ consume 64% of router leakage power
 ▪ consume up to 46% (54%) of total network power (area)
 ▪ high buffer depth (buffers per VC) prevents a packet from holding resources at multiple routers
 ▪ large number of VCs helps reduce contention under high load

• Primary contribution: instead of maintaining k buffers for each of the v virtual channels, maintain a unified storage of vk buffers and allow the number of VCs to dynamically vary between v and vk (buffer depth of k to 1)
Proposed Architecture

Figure 4. The Proposed ViChaR Architecture
Unified Buffer Design

• A table to maintain the buffer entries for each VC

• Pointers to the head and tail of each VC

• A list of free buffer entries; a list of free VCs (some VCs are used as escape routes to avoid deadlock)

• The VCs are allocated in the upstream router – hence, when a VC is freed at a router, the upstream router is informed (this is not done in a conventional router) (process similar to credit flow to estimate buffer occupancy)

• Arbitration mechanism so packets can compete for the next channel
Results

Salient results:

• With 16 buffers per input port, ViChaR out-performs the generic router by \(~25\%)%, with a 2% power increase

• With 8 buffers, ViChaR matches the performance of a 16-buffer generic router, yielding area/power savings of 30%/34\%
Title

• Bullet