
1

Lecture: Multi-threading

• Topics: coherence wrap-up, shared-memory vs. msg-passing,
synchronization primitives

2

Directory-Based Example

Request Cache
Hit/Miss

Messages Dir
State

State
in C1

State
in C2

State
in C3

State
in C4

Inv Inv Inv Inv

P1: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1 S Inv Inv Inv

P2: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1, 2 S S Inv Inv

P2: Wr X Perms
Miss

Upgr-req to Dir. Dir sends
INV to P1. P1 sends ACK to
Dir. Dir grants perms to P2.

X: M: 2 Inv M Inv Inv

P3: Wr X Write
Miss

Wr-req to Dir. Dir fwds
request to P2. P2 sends

data to Dir. Dir sends data
to P3.

X: M: 3 Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd-req to Dir. Dir fwds
request to P3. P3 sends

data to Dir. Memory wrtbk.
Dir sends data to P4.

X: S: 3, 4 Inv Inv S S

3

Cache Block States

• What are the different states a block of memory can have
within the directory?

• Note that we need information for each cache so that
invalidate messages can be sent

• The block state is also stored in the cache for efficiency

• The directory now serves as the arbitrator: if multiple
write attempts happen simultaneously, the directory
determines the ordering

4

Performance Improvements

• What determines performance on a multiprocessor:
What fraction of the program is parallelizable?
 How does memory hierarchy performance change?

• New form of cache miss: coherence miss – such a miss
would not have happened if another processor did not
write to the same cache line

• False coherence miss: the second processor writes to a
different word in the same cache line – this miss would
not have happened if the line size equaled one word

5

Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence simpler hardware
• Explicit communication easier for the programmer to

restructure code
• Sender can initiate data transfer

6

Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

7

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile

8

Message Passing Model
main()

read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);
endfor

endif
endwhile

9

Constructing Locks

• Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

• The hardware must provide some basic primitives that
allow us to construct locks with different properties

• Lock algorithms assume an underlying cache coherence
mechanism – when a process updates a lock, other
processes will eventually see the update

10

Synchronization

• The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory

• lock: t&s register, location
bnz register, lock
CS
st location, #0

11

Caching Locks

• Spin lock: to acquire a lock, a process may enter an infinite
loop that keeps attempting a read-modify till it succeeds

• If the lock is in memory, there is heavy bus traffic other
processes make little forward progress

• Locks can be cached:
 cache coherence ensures that a lock update is seen

by other processors
 the process that acquires the lock in exclusive state

gets to update the lock first
 spin on a local copy – the external bus sees little traffic

12

Coherence Traffic for a Lock

• If every process spins on an exchange, every exchange
instruction will attempt a write many invalidates and
the locked value keeps changing ownership

• Hence, each process keeps reading the lock value – a read
does not generate coherence traffic and every process
spins on its locally cached copy

• When the lock owner releases the lock by writing a 0, other
copies are invalidated, each spinning process generates a
read miss, acquires a new copy, sees the 0, attempts an
exchange (requires acquiring the block in exclusive state so
the write can happen), first process to acquire the block in
exclusive state acquires the lock, others keep spinning

13

Test-and-Test-and-Set

• lock: test register, location
bnz register, lock
t&s register, location
bnz register, lock
CS
st location, #0

14

Load-Linked and Store Conditional

• LL-SC is an implementation of atomic read-modify-write
with very high flexibility

• LL: read a value and update a table indicating you have
read this address, then perform any amount of computation

• SC: attempt to store a result into the same memory location,
the store will succeed only if the table indicates that no
other process attempted a store since the local LL (success
only if the operation was “effectively” atomic)

• SC implementations do not generate bus traffic if the
SC fails – hence, more efficient than test&test&set

15

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
BNEZ R2, lockit ; not available, keep spinning
DADDUI R2, R0, #1 ; put value 1 in R2
SC R2, 0(R1) ; store-conditional succeeds if no one

; updated the lock since the last LL
BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
bus transactions happen?

16

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
BNEZ R2, lockit ; not available, keep spinning
DADDUI R2, R0, #1 ; put value 1 in R2
SC R2, 0(R1) ; store-conditional succeeds if no one

; updated the lock since the last LL
BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
bus transactions happen?
1 write by the releaser + i (or 1) read-miss requests +
i (or 1) responses + 1 write by acquirer + 0 (i-1 failed SCs) +
i-1 (or 1) read-miss requests + i-1 (or 1) responses

(The i/i-1 read misses and responses can be reduced to 1)

17

Further Reducing Bandwidth Needs

• Ticket lock: every arriving process atomically picks up a
ticket and increments the ticket counter (with an LL-SC),
the process then keeps checking the now-serving
variable to see if its turn has arrived, after finishing its
turn it increments the now-serving variable

• Array-Based lock: instead of using a “now-serving”
variable, use a “now-serving” array and each process
waits on a different variable – fair, low latency, low
bandwidth, high scalability, but higher storage

• Queueing locks: the directory controller keeps track of
the order in which requests arrived – when the lock is
available, it is passed to the next in line (only one process
sees the invalidate and update)

18

Lock Vs. Optimistic Concurrency

lockit: LL R2, 0(R1)
BNEZ R2, lockit
DADDUI R2, R0, #1
SC R2, 0(R1)
BEQZ R2, lockit
Critical Section

ST 0(R1), #0

tryagain: LL R2, 0(R1)
DADDUI R2, R2, R3
SC R2, 0(R1)
BEQZ R2, tryagain

LL-SC is being used to figure out
if we were able to acquire the lock
without anyone interfering – we
then enter the critical section

If the critical section only involves
one memory location, the critical
section can be captured within the
LL-SC – instead of spinning on the
lock acquire, you may now be spinning
trying to atomically execute the CS

19

Barriers

• Barriers are synchronization primitives that ensure that
some processes do not outrun others – if a process
reaches a barrier, it has to wait until every process
reaches the barrier

• When a process reaches a barrier, it acquires a lock and
increments a counter that tracks the number of processes
that have reached the barrier – it then spins on a value that
gets set by the last arriving process

• Must also make sure that every process leaves the
spinning state before one of the processes reaches the
next barrier

20

Barrier Implementation

LOCK(bar.lock);
if (bar.counter == 0)

bar.flag = 0;
mycount = bar.counter++;
UNLOCK(bar.lock);
if (mycount == p) {

bar.counter = 0;
bar.flag = 1;

}
else

while (bar.flag == 0) { };

21

Sense-Reversing Barrier Implementation

local_sense = !(local_sense);
LOCK(bar.lock);
mycount = bar.counter++;
UNLOCK(bar.lock);
if (mycount == p) {

bar.counter = 0;
bar.flag = local_sense;

}
else {

while (bar.flag != local_sense) { };
}

22

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

