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Lecture: Accelerators

• Topics: GPU basics, accelerators for machine learning

• Wednesday: review session

• Next Monday 12/13, 1pm – 3pm: Final exam 
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SIMD Processors

• Single instruction, multiple data

• Such processors offer energy efficiency because a single
instruction fetch can trigger many data operations

• Such data parallelism may be useful for many
image/sound and numerical applications
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GPUs

• Initially developed as graphics accelerators; now viewed
as one of the densest compute engines available

• Many on-going efforts to run non-graphics workloads on
GPUs, i.e., use them as general-purpose GPUs or GPGPUs

• C/C++ based programming platforms enable wider use
of GPGPUs – CUDA from NVidia and OpenCL from an
industry consortium

• A heterogeneous system has a regular host CPU and a
GPU that handles (say) CUDA code (they can both be
on the same chip)
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The GPU Architecture

• SIMT – single instruction, multiple thread; a GPU has
many SIMT cores

• A large data-parallel operation is partitioned into many
thread blocks (one per SIMT core); a thread block is
partitioned into many warps (one warp running at a
time in the SIMT core); a warp is partitioned across many
in-order pipelines (each is called a SIMD lane)

• A SIMT core can have multiple active warps at a time,
i.e., the SIMT core stores the registers for each warp;
warps can be context-switched at low cost; a warp
scheduler keeps track of runnable warps and schedules
a new warp if the currently running warp stalls
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The GPU Architecture
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Architecture Features

• Simple in-order pipelines that rely on thread-level parallelism
to hide long latencies

• Many registers (~1K) per in-order pipeline (lane) to support
many active warps

• When a branch is encountered, some of the lanes proceed
along the “then” case depending on their data values;
later, the other lanes evaluate the “else” case; a branch
cuts the data-level parallelism by half (branch divergence)

• When a load/store is encountered, the requests from all
lanes are coalesced into a few 128B cache line requests;
each request may return at a different time (mem divergence)
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GPU Memory Hierarchy

• Each SIMT core has a private L1 cache (shared by the
warps on that core)

• A large L2 is shared by all SIMT cores; each L2 bank
services a subset of all addresses

• Each L2 partition is connected to its own memory
controller and memory channel

• The GDDR5 memory system runs at higher frequencies,
and uses chips with more banks, wide IO, and better
power delivery networks
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Hardware Trends

Why the recent emphasis on accelerators?

– Stagnant single- and multi-thread performance with 
general-purpose cores

• Dark silicon (emphasis on power-efficient throughput)
• End of scaling
• No low-hanging fruit

– Emergence of deep neural networks
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Commercial Hardware

Machine Learning accelerators

Google TPU (inference and training)
Recent NVIDIA chips (Volta, NVDLA)
Microsoft Brainwave, Catapult
Intel Loihi and Nervana
Cambricon
Graphcore (training)
Cerebras (training)
Groq (inference) 
Tesla FSD (inference)
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Machine Learning Workloads

• Dominated by dot-product computations

• Deep neural networks: convolutional and fully-connected layers

• Convolutions exhibit high data reuse

• Fully-connected layers have high memory-to-compute ratio
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Google TPU

• Version 1: 15-month effort, basic design, only for 
inference, 92 TOPs peak, 15x faster than GPU, 40 W 
28nm 300 mm2 chip

• Version 2: designed for training, a pod is a collection 
of v2 chips connected with a torus topology

• Version 3: 8x higher throughput, liquid cooled

Ref: Google
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TPU Architecture

8 GB

256 KB

24 MB

Weights are pre-loaded during previous
phase and inputs flow left to right.
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Tesla FSD

• Tesla’s custom accelerator chip, shipping in cars since April 2019
• FSD sits behind the glovebox, consumes 72W
• 18 months for first design, next generation out in 2 years

Image Source: Tesla
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NN Accelerator Chip (NNA)

• Goals: under 100 W (2% impact on driving range, cooling, etc.), 
50 TOPs, batch size of 1 for low latency, GPU support as well, 
security/safety.

• Security: all code must be attested by Tesla

• Safety: two completely independent systems on the board that 
verify every output

• The FSD 2.5 design (GPU based) consumes 57 W, the 3.0 design 
consumes 72 W, but is 21x faster (72 TOPs)

• 20% saving in cost by designing their own chip
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Self Driving Car Pipeline

Image Source: Lin et al., ASPLOS 2018

Detection and tracking are two of the heavy-hitters and are DNN based
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NNA Pipeline

• On-chip network moves inputs to LPDDR4: 128b@4.2 Gb/s = 68GB/s
• Includes: video encoder, image signal processor, 600 Gflop GPU, and 

12-core 2.2 GHz CPU, hardware for ReLU and pooling layers
• Most importantly: 2 NN accelerator cores, each with 96x96 grid of 

MACs and 32MB SRAM, 2 GHz, 36 TOPs per core

Image Source: Tesla
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NVIDIA Volta GPU

• 640 tensor cores
• Each tensor core performs a MAC on 4x4 tensors
• Throughput: 128 FLOPs x 640 x 1.5 GHz = 125 Tflops
• FP16 multiply operations
• 12x better than Pascal on training and 6x better on inference
• Basic matrix multiply unit – 32 inputs being fed to 64 parallel 

multipliers; 64 parallel add operations

Reference: http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf 
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