Lecture: Virtual Memory, DRAM Main Memory

- Topics: virtual memory, TLB/cache access, DRAM intro
 (Sections 2.2)
Since the number of pages is very high, the page table capacity is too large to fit on chip.

A translation lookaside buffer (TLB) caches the virtual to physical page number translation for recent accesses.

A TLB miss requires us to access the page table, which may not even be found in the cache – two expensive memory look-ups to access one word of data!

A large page size can increase the coverage of the TLB and reduce the capacity of the page table, but also increases memory waste.
TLB and Cache

• Is the cache indexed with virtual or physical address?
 - To index with a physical address, we will have to first look up the TLB, then the cache → longer access time
 - Multiple virtual addresses can map to the same physical address – can we ensure that these different virtual addresses will map to the same location in cache? Else, there will be two different copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 - Since multiple virtual addresses can map to the same physical address, a virtual tag comparison can flag a miss even if the correct physical memory word is present
TLB and Cache
Virtually Indexed Caches

- 24-bit virtual address, 4KB page size → 12 bits offset and 12 bits virtual page number
- To handle the example below, the cache must be designed to use only 12 index bits – for example, make the 64KB cache 16-way
- Page coloring can ensure that some bits of virtual and physical address match

![Diagram of virtually indexed cache and page in physical memory]
Cache and TLB Pipeline

Virtually Indexed; Physically Tagged Cache
Protection

• The hardware and operating system must co-operate to ensure that different processes do not modify each other’s memory.

• The hardware provides special registers that can be read in user mode, but only modified by instructions in supervisor mode.

• A simple solution: the physical memory is divided between processes in contiguous chunks by the OS and the bounds are stored in special registers – the hardware checks every program access to ensure it is within bounds.

• Protection bits are tracked in the TLB on a per-page basis.
Superpages

• If a program’s working set size is 16 MB and page size is 8KB, there are 2K frequently accessed pages – a 128-entry TLB will not suffice

• By increasing page size to 128KB, TLB misses will be eliminated – disadvantage: memory waste, increase in page fault penalty

• Can we change page size at run-time?

• Note that a single page has to be contiguous in physical memory
Superpages Implementation

• At run-time, build superpages if you find that contiguous virtual pages are being accessed at the same time

• For example, virtual pages 64-79 may be frequently accessed – coalesce these pages into a single superpage of size 128KB that has a single entry in the TLB

• The physical superpage has to be in contiguous physical memory – the 16 physical pages have to be moved so they are contiguous
Ski Rental Problem

- Promoting a series of contiguous virtual pages into a superpage reduces TLB misses, but has a cost: copying physical memory into contiguous locations.

- Page usage statistics can determine if pages are good candidates for superpage promotion, but if cost of a TLB miss is x and cost of copying pages is Nx, when do you decide to form a superpage?

- If ski rentals cost $50 and new skis cost $500, when do I decide to buy new skis?
 - If I rent 10 times and then buy skis, I’m guaranteed to not spend more than twice the optimal amount.
Title

• Bullet