Lecture 26: Storage Systems

- Topics: Storage Systems (Chapter 6), other innovations

- Final exam stats:
 - Highest: 95
 - Mean: 70, Median: 73
 - Toughest questions: TM, SC
Role of I/O

• Activities external to the CPU are typically orders of magnitude slower

• Example: while CPU performance has improved by 50% per year, disk latencies have improved by 10% every year

• Typical strategy on I/O: switch contexts and work on something else

• Other metrics, such as bandwidth, reliability, availability, and capacity, often receive more attention than performance
Magnetic Disks

• A magnetic disk consists of 1-12 *platters* (metal or glass disk covered with magnetic recording material on both sides), with diameters between 1-3.5 inches

• Each platter is comprised of concentric *tracks* (5-30K) and each track is divided into *sectors* (100 – 500 per track, each about 512 bytes)

• A movable arm holds the read/write heads for each disk surface and moves them all in tandem – a *cylinder* of data is accessible at a time
Disk Latency

- To read/write data, the arm has to be placed on the correct track – this *seek time* usually takes 5 to 12 ms on average – can take less if there is spatial locality

- *Rotational latency* is the time taken to rotate the correct sector under the head – average is typically more than 2 ms (15,000 RPM)

- *Transfer time* is the time taken to transfer a block of bits out of the disk and is typically 3 – 65 MB/second

- A disk controller maintains a disk cache (spatial locality can be exploited) and sets up the transfer on the bus (*controller overhead*)
RAID

- Reliability and availability are important metrics for disks
- RAID: redundant array of inexpensive (independent) disks
- Redundancy can deal with one or more failures
- Each sector of a disk records check information that allows it to determine if the disk has an error or not (in other words, redundancy already exists within a disk)
- When the disk read flags an error, we turn elsewhere for correct data
RAID 0 and RAID 1

- RAID 0 has no additional redundancy (misnomer) – it uses an array of disks and stripes (interleaves) data across the arrays to improve parallelism and throughput
- RAID 1 mirrors or shadows every disk – every write happens to two disks
- Reads to the mirror may happen only when the primary disk fails – or, you may try to read both together and the quicker response is accepted
- Expensive solution: high reliability at twice the cost
RAID 3

- Data is bit-interleaved across several disks and a separate disk maintains parity information for a set of bits.

- For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1, ..., bit 7 is in disk-7; disk-8 maintains parity for all 8 bits.

- For any read, 8 disks must be accessed (as we usually read more than a byte at a time) and for any write, 9 disks must be accessed as parity has to be re-calculated.

- High throughput for a single request, low cost for redundancy (overhead: 12.5%), low task-level parallelism.
RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our data from a single disk on a read – in case of a disk error, read all 9 disks

• Block interleaving reduces thruput for a single request (as only a single disk drive is servicing the request), but improves task-level parallelism as other disk drives are free to service other requests

• On a write, we access the disk that stores the data and the parity disk – parity information can be updated simply by checking if the new data differs from the old data
RAID 5

• If we have a single disk for parity, multiple writes can not happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous writes
RAID Summary

• RAID 1-5 can tolerate a single fault – mirroring (RAID 1) has a 100% overhead, while parity (RAID 3, 4, 5) has modest overhead

• Can tolerate multiple faults by having multiple check functions – each additional check can cost an additional disk (RAID 6)

• RAID 6 and RAID 2 (memory-style ECC) are not commercially employed
Tiled Processors

- Similar to multi-core, but a single thread can be spread across multiple cores
- Need smart scheduling to reduce inter-core communication
Redundancy

• Transient faults: a bit-flip caused by a high-energy particle

• Error rates per transistor are not increasing, but number of transistors is increasing

• Need some form of redundant computation to detect errors
Power Optimizations

- Cache leakage and decay
- Size reconfiguration
- Dynamic voltage and frequency scaling
CS 7820: Parallel Computer Architecture

- Some textbook-based lectures (cache coherence, on-chip networks, consistency models, parallel algorithms)

- Lots of recent research papers

- Lots of transactional memory

- Multi-threaded programming assignments, take-home final, paper critiques

- Major project: modifying simulators to model innovative ideas – often leads to research papers
Title

• Bullet