Lecture 23: Interconnection Networks

 Topics: communication latency, centralized and decentralized switches (Appendix E)

Topologies

- Internet topologies are not very regular they grew incrementally
- Supercomputers have regular interconnect topologies and trade off cost for high bandwidth
- Nodes can be connected with
 - centralized switch: all nodes have input and output wires going to a centralized chip that internally handles all routing
 - decentralized switch: each node is connected to a switch that routes data to one of a few neighbors

Centralized Crossbar Switch

Centralized Crossbar Switch

- Assuming each node has one input and one output, a crossbar can provide maximum bandwidth: N messages can be sent as long as there are N unique sources and N unique destinations
- Maximum overhead: WN² internal switches, where W is data width and N is number of nodes
- To reduce overhead, use smaller switches as building blocks trade off overhead for lower effective bandwidth

Switch with Omega Network

Omega Network Properties

- The switch complexity is now O(N log N)
- Contention increases: P0 \rightarrow P5 and P1 \rightarrow P7 cannot happen concurrently (this was possible in a crossbar)
- To deal with contention, can increase the number of levels (redundant paths) – by mirroring the network, we can route from P0 to P5 via N intermediate nodes, while increasing complexity by a factor of 2

Tree Network

- Complexity is O(N)
- Can yield low latencies when communicating with neighbors
- Can build a fat tree by having multiple incoming and outgoing links

- Split N nodes into two groups of N/2 nodes such that the bandwidth between these two groups is minimum: that is the bisection bandwidth
- Why is it relevant: if traffic is completely random, the probability of a message going across the two halves is ¹/₂ – if all nodes send a message, the bisection bandwidth will have to be N/2
- The concept of bisection bandwidth confirms that the tree network is not suited for random traffic patterns, but for localized traffic patterns

Distributed Switches: Ring

- Each node is connected to a 3x3 switch that routes messages between the node and its two neighbors
- Effectively a repeated bus: multiple messages in transit
- Disadvantage: bisection bandwidth of 2 and N/2 hops on average

- Performance can be increased by throwing more hardware at the problem: fully-connected switches: every switch is connected to every other switch: N² wiring complexity, N² /4 bisection bandwidth
- Most commercial designs adopt a point between the two extremes (ring and fully-connected):
 - > Grid: each node connects with its N, E, W, S neighbors
 - > Torus: connections wrap around
 - Hypercube: links between nodes whose binary names differ in a single bit

Topology Examples

Hypercube

12

Torus

Criteria	Bus	Ring	2Dtorus	6-cube	Fully connected
Performance Bisection bandwidth					
Cost					
Ports/switch					
Total links					

Topology Examples

Hypercube

Torus

Criteria	Bus	Ring	2Dtorus	6-cube	Fully connected
Performance Bisection bandwidth	1	2	16	32	1024
Cost					
Ports/switch		3	5	7	64
Total links	1	128	192	256	2080

13

- Consider a k-ary d-cube: a d-dimension array with k elements in each dimension, there are links between elements that differ in one dimension by 1 (mod k)
- Number of nodes $N = k^d$

Number of switches	2		
Switch degree			
Number of links	1		
Pins per node	ŝ		

Avg. routing distance: Diameter : Bisection bandwidth : Switch complexity :

Should we minimize or maximize dimension?

- Consider a k-ary d-cube: a d-dimension array with k elements in each dimension, there are links between elements that differ in one dimension by 1 (mod k)
- Number of nodes N = k^d

Number of switches : N Switch degree : 2d + 1 Number of links : Nd Pins per node 2wd

Avg. routing distance: Diameter Bisection bandwidth : Switch complexity : $(2d + 1)^2$

d(k-1)/2 d(k-1) 2wk^{d-1}

(with no wraparound)

Should we minimize or maximize dimension?

Bullet