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Lecture 25: Security, VM

• Today’s topics: 

 Security
 Virtual memory
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Hardware Security

• Software security: key management, buffer overflow, etc.

• Hardware security: hardware-enforced permission checks,
   authentication/encryption, etc.

• Information leakage, side channels, timing channels

• Meltdown, Spectre, SGX
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Meltdown
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Spectre: Variant 1

if  (x  <  array1_size)  
      y = array2[ array1[x] ];

Victim 
Code

x  is controlled by 
attacker

array1[ ] is the secret

Access pattern of array2[ ] betrays 
the secret

Thanks to bpred, x can be anything
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Spectre: Variant 2

R1  (from attacker)
R2  some secret
Label0:  if (…) 

… … 

Victim code 

Victim code 
Label1:
               lw [R2]

Attacker code 

Label0: if (1)

Label1:  …
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Virtual Memory

• Processes deal with virtual memory – they have the
   illusion that a very large address space is available to
   them

• There is only a limited amount of physical memory that is
   shared by all processes – a process places part of its
   virtual memory in this physical memory and the rest is
   stored on disk (called swap space)

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
   the memory of a different process
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Virtual Memory
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Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13
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Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
   memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
   huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
   translating virtual to physical page number

• The page table is itself in memory
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TLB

• Since the number of pages is very high, the page table
   capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
   to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
   may not even be found in the cache – two expensive
   memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
   and reduce the capacity of the page table, but also
   increases memory waste
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TLB and Cache Access
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TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first
     look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same
     physical address – must ensure that these
     different virtual addresses will map to the same
     location in cache – else, there will be two different
     copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same
    physical address, a virtual tag comparison can flag a
    miss even if the correct physical memory word is present
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Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache
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Bad Events

• Consider the longest latency possible for a load instruction:
 TLB miss: must look up page table to find translation for v.page P 
 Calculate the virtual memory address for the page table entry
   that has the translation for page P – let’s say, this is v.page Q
 TLB miss for v.page Q: will require navigation of a hierarchical
   page table (let’s ignore this case for now and assume we have
   succeeded in finding the physical memory location (R) for page Q)
 Access memory location R (find this either in L1, L2, or memory)
 We now have the translation for v.page P – put this into the TLB
 We now have a TLB hit and know the physical page number – this
   allows us to do tag comparison and check the L1 cache for a hit
 If there’s a miss in L1, check L2 – if that misses, check in memory
 At any point, if the page table entry claims that the page is on disk,
   flag a page fault – the OS then copies the page from disk to memory
   and the hardware resumes what it was doing before the page fault
   … phew!
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