
1

Lecture 25: Security, VM

• Today’s topics: 

 Security
 Virtual memory



2

Hardware Security

• Software security: key management, buffer overflow, etc.

• Hardware security: hardware-enforced permission checks,
   authentication/encryption, etc.

• Information leakage, side channels, timing channels

• Meltdown, Spectre, SGX



3

Meltdown



4

Spectre: Variant 1

if  (x  <  array1_size)  
      y = array2[ array1[x] ];

Victim 
Code

x  is controlled by 
attacker

array1[ ] is the secret

Access pattern of array2[ ] betrays 
the secret

Thanks to bpred, x can be anything



5

Spectre: Variant 2

R1  (from attacker)
R2  some secret
Label0:  if (…) 

… … 

Victim code 

Victim code 
Label1:
               lw [R2]

Attacker code 

Label0: if (1)

Label1:  …



6

Virtual Memory

• Processes deal with virtual memory – they have the
   illusion that a very large address space is available to
   them

• There is only a limited amount of physical memory that is
   shared by all processes – a process places part of its
   virtual memory in this physical memory and the rest is
   stored on disk (called swap space)

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
   the memory of a different process



7

Virtual Memory



8

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13



9

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
   memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
   huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
   translating virtual to physical page number

• The page table is itself in memory



10

TLB

• Since the number of pages is very high, the page table
   capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
   to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
   may not even be found in the cache – two expensive
   memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
   and reduce the capacity of the page table, but also
   increases memory waste



11

TLB and Cache Access



12

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first
     look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same
     physical address – must ensure that these
     different virtual addresses will map to the same
     location in cache – else, there will be two different
     copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same
    physical address, a virtual tag comparison can flag a
    miss even if the correct physical memory word is present



13

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache



14

Bad Events

• Consider the longest latency possible for a load instruction:
 TLB miss: must look up page table to find translation for v.page P 
 Calculate the virtual memory address for the page table entry
   that has the translation for page P – let’s say, this is v.page Q
 TLB miss for v.page Q: will require navigation of a hierarchical
   page table (let’s ignore this case for now and assume we have
   succeeded in finding the physical memory location (R) for page Q)
 Access memory location R (find this either in L1, L2, or memory)
 We now have the translation for v.page P – put this into the TLB
 We now have a TLB hit and know the physical page number – this
   allows us to do tag comparison and check the L1 cache for a hit
 If there’s a miss in L1, check L2 – if that misses, check in memory
 At any point, if the page table entry claims that the page is on disk,
   flag a page fault – the OS then copies the page from disk to memory
   and the hardware resumes what it was doing before the page fault
   … phew!


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

