
1

Lecture 20: Cache Hierarchies, Virtual Memory

• Today’s topics: 

� Cache hierarchies
� Virtual memory

• Reminder:

� Assignment 8 will be posted soon (due Tue 11/21)



2

Example Access Pattern

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10…



3

Increasing Line Size

32-byte cache
line size or 
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size 

�

smaller tag array,
fewer misses because of spatial locality



4

Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity 

�

fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare



5

Associativity

10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare



6

Example

• 32 KB 4-way set-associative data cache array with 32
byte line sizes

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?



7

Cache Misses

• On a write miss, you may either choose to bring the block
into the cache (write-allocate) or not (write-no-allocate)

• On a read miss, you always bring the block in (spatial and
temporal locality) – but which block do you replace?
� no choice for a direct-mapped cache
� randomly pick one of the ways to replace
� replace the way that was least-recently used (LRU)
� FIFO replacement (round-robin)



8

Writes

• When you write into a block, do you also update the
copy in L2?
� write-through: every write to L1 � write to L2
� write-back: mark the block as dirty, when the block

gets replaced from L1, write it to L2

• Writeback coalesces multiple writes to an L1 block into one
L2 write

• Writethrough simplifies coherency protocols in a
multiprocessor system as the L2 always has a current
copy of data



9

Types of Cache Misses

• Compulsory misses: happens the first time a memory
word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched
many other words before re-touching the same word – the
misses for a fully-associative cache

• Conflict misses: happens because two words map to the
same location in the cache – the misses generated while
moving from a fully-associative to a direct-mapped cache



10

Virtual Memory

• Processes deal with virtual memory – they have the
illusion that a very large address space is available to
them

• There is only a limited amount of physical memory that is
shared by all processes – a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
the memory of a different process



11

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13



12

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
translating virtual to physical page number

• The page table is itself in memory



13

TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory wastage



14

TLB and Cache

• Is the cache indexed with virtual or physical address?
� To index with a physical address, we will have to first

look up the TLB, then the cache � longer access time
� Multiple virtual addresses can map to the same

physical address – must ensure that these
different virtual addresses will map to the same
location in cache – else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
� Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present



15

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache



16

Bad Events

• Consider the longest latency possible for a load instruction:

� TLB miss: must look up page table to find translation for v.page P 

� Calculate the virtual memory address for the page table entry
that has the translation for page P – let’s say, this is v.page Q

� TLB miss for v.page Q: will require navigation of a hierarchical
page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)

� Access memory location R (find this either in L1, L2, or memory)

� We now have the translation for v.page P – put this into the TLB

� We now have a TLB hit and know the physical page number – this
allows us to do tag comparison and check the L1 cache for a hit

� If there’s a miss in L1, check L2 – if that misses, check in memory

� At any point, if the page table entry claims that the page is on disk,
flag a page fault – the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault
… phew!



17

Title

• Bullet


