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Lecture 20: Cache Hierarchies, Virtual Memory

• Today’s topics: 

� Cache hierarchies
� Virtual memory

• Reminder:

� Assignment 8 will be posted soon (due Tue 11/21)
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Example Access Pattern

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10…
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Increasing Line Size

32-byte cache
line size or 
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size 

�

smaller tag array,
fewer misses because of spatial locality
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Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity 

�

fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare
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Associativity

10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare
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Example

• 32 KB 4-way set-associative data cache array with 32
byte line sizes

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?
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Cache Misses

• On a write miss, you may either choose to bring the block
into the cache (write-allocate) or not (write-no-allocate)

• On a read miss, you always bring the block in (spatial and
temporal locality) – but which block do you replace?
� no choice for a direct-mapped cache
� randomly pick one of the ways to replace
� replace the way that was least-recently used (LRU)
� FIFO replacement (round-robin)
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Writes

• When you write into a block, do you also update the
copy in L2?
� write-through: every write to L1 � write to L2
� write-back: mark the block as dirty, when the block

gets replaced from L1, write it to L2

• Writeback coalesces multiple writes to an L1 block into one
L2 write

• Writethrough simplifies coherency protocols in a
multiprocessor system as the L2 always has a current
copy of data
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Types of Cache Misses

• Compulsory misses: happens the first time a memory
word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched
many other words before re-touching the same word – the
misses for a fully-associative cache

• Conflict misses: happens because two words map to the
same location in the cache – the misses generated while
moving from a fully-associative to a direct-mapped cache
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Virtual Memory

• Processes deal with virtual memory – they have the
illusion that a very large address space is available to
them

• There is only a limited amount of physical memory that is
shared by all processes – a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
the memory of a different process
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Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13
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Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
translating virtual to physical page number

• The page table is itself in memory
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TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory wastage
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TLB and Cache

• Is the cache indexed with virtual or physical address?
� To index with a physical address, we will have to first

look up the TLB, then the cache � longer access time
� Multiple virtual addresses can map to the same

physical address – must ensure that these
different virtual addresses will map to the same
location in cache – else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
� Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present
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Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache
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Bad Events

• Consider the longest latency possible for a load instruction:

� TLB miss: must look up page table to find translation for v.page P 

� Calculate the virtual memory address for the page table entry
that has the translation for page P – let’s say, this is v.page Q

� TLB miss for v.page Q: will require navigation of a hierarchical
page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)

� Access memory location R (find this either in L1, L2, or memory)

� We now have the translation for v.page P – put this into the TLB

� We now have a TLB hit and know the physical page number – this
allows us to do tag comparison and check the L1 cache for a hit

� If there’s a miss in L1, check L2 – if that misses, check in memory

� At any point, if the page table entry claims that the page is on disk,
flag a page fault – the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault
… phew!
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Title

• Bullet


