Lecture 8: Number Crunching

• Today’s topics:
 - MARS wrap-up
 - RISC vs. CISC
 - Numerical representations
 - Signed/Unsigned
 - Addition
Example Print Routine

.data
 str: .asciiz "the answer is "
.text
 li $v0, 4 # load immediate; 4 is the code for print_string
 la $a0, str # the print_string syscall expects the string
 # address as the argument; la is the instruction
 # to load the address of the operand (str)
 syscall # MARS will now invoke syscall-4
 li $v0, 1 # syscall-1 corresponds to print_int
 li $a0, 5 # print_int expects the integer as its argument
 syscall # MARS will now invoke syscall-1
Example

• Write an assembly program to prompt the user for two numbers and print the sum of the two numbers
Example

.data
str1: .asciiz "Enter 2 numbers:"
str2: .asciiz "The sum is

.text
li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall
IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years – old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in registers or memory, only 8 general-purpose registers, one of the operands is over-written

• RISC instructions are more amenable to high performance (clock speed and parallelism) – modern Intel processors convert IA-32 instructions into simpler micro-operations
Endianness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
 Register: 7f 87 7b 45
 Most-significant bit Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
 Register: 45 7b 87 7f
 Most-significant bit Least-significant bit (MIPS, IBM)
Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity

\[0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + \ldots + 1 \times 2^0 \]

• A 32-bit word can represent \(2^{32} \) numbers between 0 and \(2^{32}-1 \)

… this is known as the unsigned representation as we’re assuming that numbers are always positive
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
 In binary: 30 bits \((2^{30} > 1 \text{ billion})\)
 In ASCII: 10 characters, 8 bits per char = 80 bits
Negative Numbers

32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers.

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000two</td>
<td>0ten</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 00001two</td>
<td>-(2^{31} – 1)</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0010two</td>
<td>-(2^{31} – 2)</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1110two</td>
<td>-2</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111two</td>
<td>-1</td>
</tr>
</tbody>
</table>
2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000_\text{two} = 0_	ext{ten}
0000 0000 0000 0000 0000 0000 0000 0001_\text{two} = 1_	ext{ten}

\ldots

0111 1111 1111 1111 1111 1111 1111 1111_\text{two} = 2^{31} - 1

1000 0000 0000 0000 0000 0000 0000 0000_\text{two} = -2^{31}
1000 0000 0000 0000 0000 0000 0000 0001_\text{two} = -(2^{31} - 1)
1000 0000 0000 0000 0000 0000 0000 0010_\text{two} = -(2^{31} - 2)

\ldots

1111 1111 1111 1111 1111 1111 1111 1110_\text{two} = -2
1111 1111 1111 1111 1111 1111 1111 1111_\text{two} = -1

Why is this representation favorable?
Consider the sum of 1 and -2 \ldots we get -1
Consider the sum of 2 and -1 \ldots we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
\[x_{31} \cdot -2^{31} + x_{30} \cdot 2^{30} + x_{29} \cdot 2^{29} + \ldots + x_{1} \cdot 2^{1} + x_{0} \cdot 2^{0} \]
2’s Complement

\[
\begin{align*}
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_{\text{two}} &= 0_{\text{ten}} \\
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0001_{\text{two}} &= 1_{\text{ten}} \\
\ldots \\
0111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111_{\text{two}} &= 2^{31}\!-\!1 \\
1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_{\text{two}} &= -2^{31} \\
1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0001_{\text{two}} &= -(2^{31} - 1) \\
1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0010_{\text{two}} &= -(2^{31} - 2) \\
\ldots \\
1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1100_{\text{two}} &= -2 \\
1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1110_{\text{two}} &= -1
\end{align*}
\]

Note that the sum of a number \(x \) and its inverted representation \(x' \) always equals a string of 1s (-1).
\[
\begin{align*}
x + x' &= -1 \\
x' + 1 &= -x \quad \ldots \text{hence, can compute the negative of a number by} \\
-x &= x' + 1 \quad \text{inverting all bits and adding 1}
\end{align*}
\]

Similarly, the sum of \(x \) and \(-x\) gives us all zeroes, with a carry of 1.
\[
\text{In reality, } x + (-x) = 2^n \quad \ldots \text{hence the name 2’s complement}
\]
Example

• Compute the 32-bit 2’s complement representations for the following decimal numbers:
 5, -5, -6
Example

- Compute the 32-bit 2’s complement representations for the following decimal numbers:
 5, -5, -6

 5: 0000 0000 0000 0000 0000 0000 0000 0101
 -5: 1111 1111 1111 1111 1111 1111 1111 1011
 -6: 1111 1111 1111 1111 1111 1111 1111 1010

Given -5, verify that negating and adding 1 yields the number 5
Signed / Unsigned

- The hardware recognizes two formats:

 unsigned (corresponding to the C declaration `unsigned int`)
 -- all numbers are positive, a 1 in the most significant bit
 just means it is a really large number

 signed (C declaration is `signed int` or just `int`)
 -- numbers can be +/- , a 1 in the MSB means the number
 is negative

This distinction enables us to represent twice as many numbers when we’re sure that we don’t need negatives
Consider a comparison instruction:

```
slt  $t0, $t1, $zero
```

and $t1 contains the 32-bit number 1111 01...01

What gets stored in $t0?
MIPS Instructions

Consider a comparison instruction:

\[
\text{slt} \quad t0, t1, 0
\]

and \(t1 \) contains the 32-bit number 1111 01…01

What gets stored in \(t0 \)?

The result depends on whether \(t1 \) is a signed or unsigned number – the compiler/programmer must track this and accordingly use either \(\text{slt} \) or \(\text{sltu} \)

\[
\begin{align*}
\text{slt} & \quad t0, t1, 0 \quad \text{stores 1 in } t0 \\
\text{sltu} & \quad t0, t1, 0 \quad \text{stores 0 in } t0
\end{align*}
\]
Sign Extension

• Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers – for example, when doing an add with an immediate operand

• The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left – known as sign extension

So 2_{10} goes from $0000\ 0000\ 0000\ 0010$ to $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010$

and -2_{10} goes from $1111\ 1111\ 1111\ 1110$ to $1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110$
Alternative Representations

• The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers

 ▪ sign-and-magnitude: the most significant bit represents +/- and the remaining bits express the magnitude

 ▪ one’s complement: -x is represented by inverting all the bits of x

Both representations above suffer from two zeroes
Addition and Subtraction

• Addition is similar to decimal arithmetic

• For subtraction, simply add the negative number – hence, subtract $A-B$ involves negating B’s bits, adding 1 and A

Source: H&P textbook

```
\[
\begin{array}{cccccccc}
\ldots & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\ldots & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\ldots & (0) & 0 & (0) & 1 & (1) & 0 & (0) & 1 \\
\end{array}
\]

(Carries)

Source: H&P textbook
Overflows

• For an unsigned number, overflow happens when the last carry (1) cannot be accommodated.

• For a signed number, overflow happens when the most significant bit is not the same as every bit to its left:
  ▪ when the sum of two positive numbers is a negative result
  ▪ when the sum of two negative numbers is a positive result
  ▪ The sum of a positive and negative number will never overflow

• MIPS allows addu and subu instructions that work with unsigned integers and never flag an overflow – to detect the overflow, other instructions will have to be executed.