Lecture 15: Basic CPU Design

• Today’s topics:
 ▪ FSM wrap-up
 ▪ Single-cycle CPU
 ▪ Multi-cycle CPU
Three questions worth asking:

- What are the possible output states? Draw a bubble for each.
- What are inputs? What values can those inputs take?
- For each state, what do I do for each possible input value? Draw an arc out of every bubble for every input value.
Example – Residential Thermostat

- Two temp sensors: internal and external
- If internal temp is within 1 degree of desired, don’t change setting
- If internal temp is > 1 degree higher than desired, turn AC on; if internal temp is < 1 degree lower than desired, turn heater on
- If external temp and desired temp are within 5 degrees, turn AC and heater off
Finite State Diagram

- **HEAT**
 - U-C, U-G
 - D-C, D-G, D-H

- **COOL**
 - U-H, U-G
 - D-C, D-G, D-H

- **OFF**
 - U-H
 - D-C, D-G, D-H, U-G
Latch vs. Flip-Flop

- Recall that we want a circuit to have stable inputs for an entire cycle – so I want my new inputs to arrive at the start of a cycle and be fixed for an entire cycle.

- A flip-flop provides the above semantics (a door that swings open and shut at the start of a cycle).

- But a flip-flop needs two back-to-back D-latches, i.e., more transistors, delay, power.

- You can reduce these overheads with just a single D-latch (a door that is open for half a cycle) as long as you can tolerate stable inputs for just half a cycle.
Basic MIPS Architecture

- Now that we understand clocks and storage of states, we’ll design a simple CPU that executes:
 - basic math (add, sub, and, or, slt)
 - memory access (lw and sw)
 - branch and jump instructions (beq and j)
Implementation Overview

- We need memory
 - to store instructions
 - to store data
 - for now, let’s make them separate units

- We need registers, ALU, and a whole lot of control logic

- CPU operations common to all instructions:
 - use the program counter (PC) to pull instruction out of instruction memory
 - read register values
View from 30,000 Feet

- What is the role of the Add units?
- Explain the inputs to the data memory unit
- Explain the inputs to the ALU
- Explain the inputs to the register unit

Note: we haven’t bothered showing multiplexors

Source: H&P textbook
Clocking Methodology

- Which of the above units need a clock?
- What is being saved (latched) on the rising edge of the clock? Keep in mind that the latched value remains there for an entire cycle.

Source: H&P textbook
Implementing R-type Instructions

- Instructions of the form `add $t1, $t2, $t3`
- Explain the role of each signal

Source: H&P textbook
Implementing Loads/Stores

• Instructions of the form \texttt{lw} \ $t1, 8(t2) \ and \ \texttt{sw} \ $t1, 8(t2)

Where does this input come from?

a. Registers

Source: H&P textbook
Implementing J-type Instructions

- Instructions of the form \(\text{beq } \$t1, \$t2, \text{offset} \)
View from 10,000 Feet

Source: H&P textbook
View from 5,000 Feet
Title

- Bullet