Lecture 7: Examples, MARS, Arithmetic

• Today’s topics:

 - More examples
 - MARS intro
 - Numerical representations
Dealing with Characters

• Instructions are also provided to deal with byte-sized and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with characters, pixel values, etc.

• C employs ASCII formats to represent characters – each character is represented with 8 bits and a string ends in the null character (corresponding to the 8-bit number 0); A is 65, a is 97
Example 3 (pg. 108)

Convert to assembly:
void strcpy (char x[], char y[])
{
 int i;
 i=0;
 while ((x[i] = y[i]) != `\0')
 i += 1;
}

Notes:
Temp registers not saved.

strcpy:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero
L1: add $t1, $s0, $a1
lb $t2, 0($t1)
add $t3, $s0, $a0
sb $t2, 0($t3)
beq $t2, $zero, L2
addi $s0, $s0, 1
j L1
L2: lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra
Large Constants

- Immediate instructions can only specify 16-bit constants.
- The lui instruction is used to store a 16-bit constant into the upper 16 bits of a register... combine this with an OR instruction to specify a 32-bit constant.
- The destination PC-address in a conditional branch is specified as a 16-bit constant, relative to the current PC.
- A jump (j) instruction can specify a 26-bit constant; if more bits are required, the jump-register (jr) instruction is used.
Starting a Program

C Program → Compiler → Assembly language program → Assembler → Object: machine language module → Linker → Object: library routine (machine language) → Linker → Executable: machine language program → Loader → Memory

- C Program: x.c
- Assembly language program: x.s
- Object: machine language module: x.o
- Object: library routine (machine language): x.a, x.so
- Executable: machine language program: a.out
Role of Assembler

• Convert pseudo-instructions into actual hardware instructions – pseudo-instrs make it easier to program in assembly – examples: “move”, “blt”, 32-bit immediate operands, etc.

• Convert assembly instrs into machine instrs – a separate object file (x.o) is created for each C file (x.c) – compute the actual values for instruction labels – maintain info on external references and debugging information
Role of Linker

• Stitches different object files into a single executable
 ▪ patch internal and external references
 ▪ determine addresses of data and instruction labels
 ▪ organize code and data modules in memory

• Some libraries (DLLs) are dynamically linked – the executable points to dummy routines – these dummy routines call the dynamic linker-loader so they can update the executable to jump to the correct routine
```c
void sort (int v[], int n)
{
    int i, j;
    for (i=0; i<n; i+=1) {
        for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
            swap (v,j);
        }
    }
}

void swap (int v[], int k)
{
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

- Allocate registers to program variables
- Produce code for the program body
- Preserve registers across procedure invocations
The swap Procedure

- Register allocation: $a0 and $a1 for the two arguments, $t0 for the temp variable – no need for saves and restores as we’re not using $s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

```assembly
swap:    sll     $t1, $a1, 2
         add   $t1, $a0, $t1
         lw     $t0, 0($t1)
         lw     $t2, 4($t1)
         sw     $t2, 0($t1)
         sw     $t0, 4($t1)
         jr      $ra
```

```c
void swap (int v[], int k) {
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```
The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use $s0 and $s1; must save $a0 and $a1 before calling the leaf procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

```assembly
move $s0, $zero           # initialize the loop
loopbody1: bge $s0, $a1, exit1  # will eventually use slt and beq
  … body of inner loop …
  addi $s0, $s0, 1
  j loopbody1
exit1:
```

```c
for (i=0; i<n; i+=1) {
  for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
    swap (v,j);
  }
}
```
The sort Procedure

• The inner for loop looks like this:

```assembly
addi $s1, $s0, -1          # initialize the loop
loopbody2: blt $s1, $zero, exit2   # will eventually use slt and beq
  sll  $t1,  $s1, 2
  add  $t2, $a0, $t1
  lw   $t3, 0($t2)
  lw   $t4, 4($t2)
  bgt  $t3, $t4, exit2
  ... body of inner loop ...
addi $s1, $s1, -1
j     loopbody2
exit2:
```

```plaintext
for (i=0; i<n; i+=1) {
    for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
        swap (v,j);
    }
}
```
Saves and Restores

- Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by copying its arguments into $s2 and $s3 – must update the rest of the code in “sort” to use $s2 and $s3 instead of $a0 and $a1

- Must save $ra at the start of “sort” because it will get over-written when we call “swap”

- Must also save $s0-$s3 so we don’t overwrite something that belongs to the procedure that called “sort”
Saves and Restores

sort: addi $sp, $sp, -20
sw $ra, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)
move $s2, $a0
move $s3, $a1
...
move $a0, $s2 # the inner loop body starts here
move $a1, $s1
jal swap
...
exit1: lw $s0, 0($sp)
...
addi $sp, $sp, 20
jr $ra

9 lines of C code → 35 lines of assembly
MARS

• MARS is a simulator that reads in an assembly program and models its behavior on a MIPS processor

• Note that a “MIPS add instruction” will eventually be converted to an add instruction for the host computer’s architecture – this translation happens under the hood

• To simplify the programmer’s task, it accepts pseudo-instructions, large constants, constants in decimal/hex formats, labels, etc.

• The simulator allows us to inspect register/memory values to confirm that our program is behaving correctly
MARS Intro

• Directives, labels, global pointers, system calls
MARS Intro
MARS Intro

- Directives, labels, global pointers, system calls
Example Print Routine

.data
 str: .asciiz "the answer is "
.text
 li $v0, 4 # load immediate; 4 is the code for print_string
 la $a0, str # the print_string syscall expects the string
 syscall # address as the argument; la is the instruction
 # to load the address of the operand (str)
 syscall # MARS will now invoke syscall-4
 li $v0, 1 # syscall-1 corresponds to print_int
 li $a0, 5 # print_int expects the integer as its argument
 syscall # MARS will now invoke syscall-1
Example

- Write an assembly program to prompt the user for two numbers and print the sum of the two numbers
Example

.data
str1: .asciiz "Enter 2 numbers:"
str2: .asciiz "The sum is

.text
li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall
IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years – old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in registers or memory, only 8 general-purpose registers, one of the operands is over-written

• RISC instructions are more amenable to high performance (clock speed and parallelism) – modern Intel processors convert IA-32 instructions into simpler micro-operations
Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
 Register: 7f 87 7b 45
 Most-significant bit [] Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
 Register: 45 7b 87 7f
 Most-significant bit [] Least-significant bit (MIPS, IBM)
Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity

\[0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + \ldots + 1 \times 2^0\]

• A 32-bit word can represent \(2^{32}\) numbers between 0 and \(2^{32}-1\)

\[\ldots\text{this is known as the unsigned representation as we’re assuming that numbers are always positive}\]
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
 In binary: 30 bits \((2^{30} > 1 \text{ billion}) \)
 In ASCII: 10 characters, 8 bits per char = 80 bits
Negative Numbers

32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers

\[
\begin{align*}
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{\text{two}} &= 0_{\text{ten}} \\
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{\text{two}} &= 1_{\text{ten}} \\
&\vdots \\
0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111_{\text{two}} &= 2^{31}-1 \\
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{\text{two}} &= -2^{31} \\
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{\text{two}} &= -(2^{31} - 1) \\
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010_{\text{two}} &= -(2^{31} - 2) \\
&\vdots \\
1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110_{\text{two}} &= -2 \\
1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111_{\text{two}} &= -1
\end{align*}
\]
2’s Complement

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000<sub>two</sub></td>
<td>0<sub>ten</sub></td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0001<sub>two</sub></td>
<td>1<sub>ten</sub></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111<sub>two</sub></td>
<td>2<sup>31</sup> - 1</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0000<sub>two</sub></td>
<td>-2<sup>31</sup></td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0001<sub>two</sub></td>
<td>-(2<sup>31</sup> - 1)</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0010<sub>two</sub></td>
<td>-(2<sup>31</sup> - 2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1110<sub>two</sub></td>
<td>-2</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111<sub>two</sub></td>
<td>-1</td>
</tr>
</tbody>
</table>

Why is this representation favorable?

Consider the sum of 1 and -2 we get -1
Consider the sum of 2 and -1 we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity

\[x_{31} \cdot 2^{31} + x_{30} \cdot 2^{30} + x_{29} \cdot 2^{29} + \ldots + x_1 \cdot 2^1 + x_0 \cdot 2^0 \]
2’s Complement

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

$x + x' = -1$

$x' + 1 = -x$ … hence, can compute the negative of a number by

$-x = x' + 1$ … inverting all bits and adding 1

Similarly, the sum of x and $-x$ gives us all zeroes, with a carry of 1

In reality, $x + (-x) = 2^n$ … hence the name 2’s complement
Example

- Compute the 32-bit 2’s complement representations for the following decimal numbers:
 5, -5, -6
Example

- Compute the 32-bit 2’s complement representations for the following decimal numbers:

 5, -5, -6

 5: 0000 0000 0000 0000 0000 0000 0000 0101
 -5: 1111 1111 1111 1111 1111 1111 1111 1011
 -6: 1111 1111 1111 1111 1111 1111 1111 1010

 Given -5, verify that negating and adding 1 yields the number 5
Title

• Bullet