Lecture 2: Performance

• Today’s topics:
 ▪ Technology wrap-up
 ▪ Performance trends and equations

• Reminders: YouTube videos, canvas, and class webpage: http://www.cs.utah.edu/~rajeev/cs3810/
Important Trends

- Historical contributions to performance:
 1. Better processes (faster devices) ~20%
 2. Better circuits/pipelines ~15%
 3. Better organization/architecture ~15%

In the future, bullet-2 will help little and bullet-1 will eventually disappear!

<table>
<thead>
<tr>
<th>Year</th>
<th>Pentium</th>
<th>P-Pro</th>
<th>P-II</th>
<th>P-III</th>
<th>P-4</th>
<th>Itanium</th>
<th>Montecito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td>3.1M</td>
<td>5.5M</td>
<td>7.5M</td>
<td>9.5M</td>
<td>42M</td>
<td>300M</td>
<td>1720M</td>
</tr>
<tr>
<td>Clock Speed</td>
<td>60M</td>
<td>200M</td>
<td>300M</td>
<td>500M</td>
<td>1500M</td>
<td>800M</td>
<td>1800M</td>
</tr>
</tbody>
</table>

Moore’s Law in action

At this point, adding transistors to a core yields little benefit
What Does This Mean to a Programmer?

• Today, one can expect only a 20% annual improvement; the improvement is even lower if the program is not multi-threaded
 ▪ A program needs many threads
 ▪ The threads need efficient synchronization and communication
 ▪ Data placement in the memory hierarchy is important
 ▪ Accelerators should be used when possible
Wafers and Dies

Source: H&P Textbook
Manufacturing Process

• Silicon wafers undergo many processing steps so that different parts of the wafer behave as insulators, conductors, and transistors (switches)

• Multiple metal layers on the silicon enable connections between transistors

• The wafer is chopped into many dies – the size of the die determines yield and cost
Processor Technology Trends

• Transistor density increases by 35% per year and die size increases by 10-20% per year... functionality improvements!

• Transistor speed improves linearly with size (complex equation involving voltages, resistances, capacitances)

• Wire delays do not scale down at the same rate as transistor delays
Memory and I/O Technology Trends

- DRAM density increases by 40-60% per year, latency has reduced by 33% in 10 years (the memory wall!), bandwidth improves twice as fast as latency decreases

- Disk density improves by 100% every year, latency improvement similar to DRAM

- Networks: primary focus on bandwidth; 10Mb \rightarrow 100Mb in 10 years; 100Mb \rightarrow 1Gb in 5 years
Performance Metrics

• Possible measures:
 ▪ response time – time elapsed between start and end of a program
 ▪ throughput – amount of work done in a fixed time

• The two measures are usually linked
 ▪ A faster processor will improve both
 ▪ More processors will likely only improve throughput
 ▪ Some policies will improve throughput and worsen response time

• What influences performance?
Consider a system X executing a fixed workload W

$$\text{Performance}_X = \frac{1}{\text{Execution time}_X}$$

Execution time = response time = wall clock time

- Note that this includes time to execute the workload as well as time spent by the operating system co-ordinating various events

The UNIX “time” command breaks up the wall clock time as user and system time
Speedup and Improvement

• System X executes a program in 10 seconds, system Y executes the same program in 15 seconds

• System X is 1.5 times faster than system Y

• The speedup of system X over system Y is 1.5 (the ratio) = perf X / perf Y = exec-time Y / exec-time X

• The performance improvement of X over Y is 1.5 - 1 = 0.5 = 50% = (perf X – perf Y) / perf Y = speedup - 1

• The execution time reduction for system X, compared to Y is (15-10) / 15 = 33%
 The execution time increase for Y, compared to X is (15-10) / 10 = 50%
Performance Equation - I

CPU execution time = CPU clock cycles x Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks 3 billion times in a second – as we’ll soon see, with each clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor, how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz processor, what is the execution time in seconds?
Performance Equation - II

CPU clock cycles = number of instrs \times \text{avg clock cycles per instruction (CPI)}

Substituting in previous equation,

Execution time = \text{clock cycle time} \times \text{number of instrs} \times \text{avg CPI}

If a 2 GHz processor graduates an instruction every third cycle, how many instructions are there in a program that runs for 10 seconds?
Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each transistor), how much work gets done in each pipeline stage (more on this later)

• Number of instrs: the quality of the compiler and the instruction set architecture

• CPI: the nature of each instruction and the quality of the architecture implementation
Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a compiler; the MIPS processor is implemented such that each instruction completes in an average of 1.5 cycles and the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions; the x86 processor is implemented such that each instruction completes in an average of 6 cycles and the clock speed is 1.5 GHz
Example Problem

• A 1 GHz processor takes 100 seconds to execute a program, while consuming 70 W of dynamic power and 30 W of leakage power. Does the program consume less energy in Turbo boost mode when the frequency is increased to 1.2 GHz?
Example Problem

- A 1 GHz processor takes 100 seconds to execute a program, while consuming 70 W of dynamic power and 30 W of leakage power. Does the program consume less energy in Turbo boost mode when the frequency is increased to 1.2 GHz?

Normal mode energy = $100 \text{ W} \times 100 \text{ s} = 10,000 \text{ J}$
Turbo mode energy = $(70 \times 1.2 + 30) \times 100/1.2 = 9,500 \text{ J}$

Note:
Frequency only impacts dynamic power, not leakage power. We assume that the program’s CPI is unchanged when frequency is changed, i.e., exec time varies linearly with cycle time.
Title

- Bullet