Lecture 7: MARS, Computer Arithmetic

• Today’s topics:
 - MARS intro
 - Numerical representations
void sort (int v[], int n)
{
 int i, j;
 for (i=0; i<n; i+=1) {
 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
 swap (v,j);
 }
 }
}

void swap (int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations
The swap Procedure

- Register allocation: $a0 and $a1 for the two arguments, $t0 for the temp variable – no need for saves and restores as we’re not using $s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

```
void swap (int v[], int k) {
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

```
swap:    sll     $t1, $a1, 2
add   $t1, $a0, $t1
lw     $t0, 0($t1)
lw     $t2, 4($t1)
sw     $t2, 0($t1)
sw     $t0, 4($t1)
jr      $ra
```
The sort Procedure

- Register allocation: arguments v and n use $a0 and $a1, i and j use $s0 and $s1; must save $a0 and $a1 before calling the leaf procedure

- The outer for loop looks like this: (note the use of pseudo-instrs)

```
move   $s0, $zero            # initialize the loop
loopbody1: bge $s0, $a1, exit1     # will eventually use slt and beq
… body of inner loop …
addi   $s0, $s0, 1
j     loopbody1
exit1:
```

```
for (i=0; i<n; i+=1) {
    for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
        swap (v,j);
    }
}
```
The sort Procedure

- The inner for loop looks like this:

```assembly
addi     $s1, $s0, -1          # initialize the loop
loopbody2: blt        $s1, $zero, exit2   # will eventually use slt and beq
        sll        $t1,  $s1, 2
        add      $t2, $a0, $t1
        lw        $t3, 0($t2)
        lw        $t4, 4($t2)
        bgt       $t3, $t4, exit2
        … body of inner loop …
        addi     $s1, $s1, -1
        j            loopbody2
exit2:
```

```c
for (i=0; i<n; i+=1) {
    for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
        swap (v,j);
    }
}
```
Saves and Restores

- Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by copying its arguments into $s2 and $s3 – must update the rest of the code in “sort” to use $s2 and $s3 instead of $a0 and $a1.

- Must save $ra at the start of “sort” because it will get over-written when we call “swap”.

- Must also save $s0-$s3 so we don’t overwrite something that belongs to the procedure that called “sort”.
Saves and Restores

sort:
 addi $sp, $sp, -20
 sw $ra, 16($sp)
 sw $s3, 12($sp)
 sw $s2, 8($sp)
 sw $s1, 4($sp)
 sw $s0, 0($sp)
 move $s2, $a0
 move $s3, $a1

... move $a0, $s2 # the inner loop body starts here
 move $a1, $s1
 jal swap

... exit1: lw $s0, 0($sp)

... addi $sp, $sp, 20
 jr $ra
MARS

• MARS is a simulator that reads in an assembly program and models its behavior on a MIPS processor

• Note that a “MIPS add instruction” will eventually be converted to an add instruction for the host computer’s architecture – this translation happens under the hood

• To simplify the programmer’s task, it accepts pseudo-instructions, large constants, constants in decimal/hex formats, labels, etc.

• The simulator allows us to inspect register/memory values to confirm that our program is behaving correctly
MARS Intro

- Directives, labels, global pointers, system calls
Example Print Routine

.data
 str: .asciiz "the answer is ",

.text
 li $v0, 4 # load immediate; 4 is the code for print_string
 la $a0, str # the print_string syscall expects the string
 # address as the argument; la is the instruction
 # to load the address of the operand (str)
 syscall # SPIM will now invoke syscall-4
 li $v0, 1 # syscall-1 corresponds to print_int
 li $a0, 5 # print_int expects the integer as its argument
 syscall # SPIM will now invoke syscall-1
Example

- Write an assembly program to prompt the user for two numbers and print the sum of the two numbers
Example

.data
 str1: .asciiz "Enter 2 numbers:"
 str2: .asciiz "The sum is

.text
 li $v0, 4
 la $a0, str1
 syscall
 li $v0, 5
 syscall
 add $t0, $v0, $zero
 li $v0, 5
 syscall
 add $t1, $v0, $zero
 li $v0, 4
 la $a0, str2
 syscall
 li $v0, 1
 add $a0, $t1, $t0
 syscall
IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years – old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in registers or memory, only 8 general-purpose registers, one of the operands is over-written

• RISC instructions are more amenable to high performance (clock speed and parallelism) – modern Intel processors convert IA-32 instructions into simpler micro-operations
Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
Register: 7f 87 7b 45
Most-significant bit Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
Register: 45 7b 87 7f
Most-significant bit Least-significant bit (MIPS, IBM)
Binary Representation

- The binary number

01011000 00010101 00101110 11100111

represents the quantity

$$0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + \ldots + 1 \times 2^0$$

- A 32-bit word can represent $$2^{32}$$ numbers between 0 and $$2^{32}-1$$

... this is known as the unsigned representation as we’re assuming that numbers are always positive
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
 - In binary: 30 bits \((2^{30} > 1\text{ billion})\)
 - In ASCII: 10 characters, 8 bits per char \(= 80\) bits
Negative Numbers

32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers.

0000 0000 0000 0000 0000 0000 0000 0000_{two} = 0_{ten}
0000 0000 0000 0000 0000 0000 0000 0001_{two} = 1_{ten}

... 0111 1111 1111 1111 1111 1111 1111 1111_{two} = 2^{31}-1

1000 0000 0000 0000 0000 0000 0000 0000_{two} = -2^{31}
1000 0000 0000 0000 0000 0000 0000 0001_{two} = $-(2^{31} - 1)$
1000 0000 0000 0000 0000 0000 0000 0010_{two} = $-(2^{31} - 2)$

... 1111 1111 1111 1111 1111 1111 1111 1110_{two} = -2
1111 1111 1111 1111 1111 1111 1111 1111_{two} = -1
2’s Complement

<table>
<thead>
<tr>
<th>Binary</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000 two</td>
<td>0_{ten}</td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0001 two</td>
<td>1_{ten}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111 two</td>
<td>2^{31} - 1</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0000 two</td>
<td>-2^{31}</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0001 two</td>
<td>-(2^{31} - 1)</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0010 two</td>
<td>-(2^{31} - 2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1110 two</td>
<td>-2</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111 two</td>
<td>-1</td>
</tr>
</tbody>
</table>

Why is this representation favorable?
Consider the sum of 1 and -2 we get -1
Consider the sum of 2 and -1 we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity

\[x_{31} \cdot 2^{31} + x_{30} \cdot 2^{30} + x_{29} \cdot 2^{29} + \ldots + x_1 \cdot 2^1 + x_0 \cdot 2^0 \]
2’s Complement

```
0000 0000 0000 0000 0000 0000 0000 0000\text{two} = 0_{\text{ten}}
0000 0000 0000 0000 0000 0000 0000 0001\text{two} = 1_{\text{ten}}

\ldots
0111 1111 1111 1111 1111 1111 1111 1111\text{two} = 2^{31}-1

1000 0000 0000 0000 0000 0000 0000 0000\text{two} = -2^{31}
1000 0000 0000 0000 0000 0000 0000 0001\text{two} = -(2^{31} - 1)
1000 0000 0000 0000 0000 0000 0000 0010\text{two} = -(2^{31} - 2)

\ldots
1111 1111 1111 1111 1111 1111 1111 1110\text{two} = -2
1111 1111 1111 1111 1111 1111 1111 1111\text{two} = -1
```

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

\[x + x' = -1 \]
\[x' + 1 = -x \] \quad \text{... hence, can compute the negative of a number by}
\[-x = x' + 1 \] \quad \text{inverting all bits and adding 1}

Similarly, the sum of x and $-x$ gives us all zeroes, with a carry of 1.
In reality, $x + (-x) = 2^n$ \quad \text{... hence the name 2’s complement}
Example

• Compute the 32-bit 2’s complement representations for the following decimal numbers:
 5, -5, -6
Example

- Compute the 32-bit 2’s complement representations for the following decimal numbers:
 - 5, -5, -6

5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1111 1111 1111 1111 1111 1111 1011
-6: 1111 1111 1111 1111 1111 1111 1111 1010

Given -5, verify that negating and adding 1 yields the number 5
Signed / Unsigned

• The hardware recognizes two formats:

 unsigned (corresponding to the C declaration `unsigned int`)
 -- all numbers are positive, a 1 in the most significant bit just means it is a really large number

 signed (C declaration is `signed int` or just `int`)
 -- numbers can be +/- , a 1 in the MSB means the number is negative

This distinction enables us to represent twice as many numbers when we’re sure that we don’t need negatives
Consider a comparison instruction:

```plaintext
slt   $t0, $t1, $zero
```

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
Consider a comparison instruction:
 slt $t0, $t1, $zero
and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned number – the compiler/programmer must track this and accordingly use either slt or sltu

 slt $t0, $t1, $zero stores 1 in $t0
 sltu $t0, $t1, $zero stores 0 in $t0
Sign Extension

• Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers – for example, when doing an add with an immediate operand.

• The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left – known as sign extension.

So 2_{10} goes from 0000 0000 0000 0010 to 0000 0000 0000 0000 0000 0000 0010

and -2_{10} goes from 1111 1111 1111 1110 to 1111 1111 1111 1111 1111 1111 1111 1110
Alternative Representations

• The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers:
 - sign-and-magnitude: the most significant bit represents +/- and the remaining bits express the magnitude
 - one’s complement: -x is represented by inverting all the bits of x

Both representations above suffer from two zeroes
Title

• Bullet