Lecture 21: Memory Hierarchy

• Today’s topics:
 - Cache organization
 - Cache hits/misses
Memory Hierarchy

• As you go further, capacity and latency increase
Accessing the Cache

Direct-mapped cache: each address maps to a unique address

8-byte words

Sets

8 words: 3 index bits

Byte address

Offset

Data array

101000
The Tag Array

Direct-mapped cache: each address maps to a unique address

Byte address

Tag

101000

Compare

Tag array

Data array

8-byte words
Example Access Pattern

Assume that addresses are 8 bits long. How many of the following address requests are hits/misses? 4, 7, 10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10…

Direct-mapped cache: each address maps to a unique address.
Increasing Line Size

A large cache line size → smaller tag array, fewer misses because of spatial locality

32-byte cache line size or block size

Tag array

Data array

Byte address

Tag

Offset
Associativity

Set associativity → fewer conflicts; wasted power because multiple data and tags are read
Associativity

How many offset/index/tag bits if the cache has 64 sets, each set has 64 bytes, 4 ways

Way-1

Way-2

Data array

Compare

Tag array

Tag

Byte address

10100000
Example

- 32 KB 4-way set-associative data cache array with 32 byte line sizes

- How many sets?

- How many index bits, offset bits, tag bits?

- How large is the tag array?
Cache Misses

- On a write miss, you may either choose to bring the block into the cache (write-allocate) or not (write-no-allocate)
- On a read miss, you always bring the block in (spatial and temporal locality) – but which block do you replace?
 - no choice for a direct-mapped cache
 - randomly pick one of the ways to replace
 - replace the way that was least-recently used (LRU)
 - FIFO replacement (round-robin)
Writes

• When you write into a block, do you also update the copy in L2?
 ➢ write-through: every write to L1 → write to L2
 ➢ write-back: mark the block as dirty, when the block gets replaced from L1, write it to L2

• Writeback coalesces multiple writes to an L1 block into one L2 write

• Writethrough simplifies coherency protocols in a multiprocessor system as the L2 always has a current copy of data
Types of Cache Misses

• Compulsory misses: happens the first time a memory word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched many other words before re-touching the same word – the misses for a fully-associative cache

• Conflict misses: happens because two words map to the same location in the cache – the misses generated while moving from a fully-associative to a direct-mapped cache
Title

• Bullet