
Honu: A Syntactically Extensible Language

Jon Rafkind
University of Utah

rafkind@cs.utah.edu

Matthew Flatt
University of Utah

mflatt@cs.utah.edu

Abstract
Honu is a new language that fuses traditional algebraic notation
(e.g., infix binary operators) with Scheme-style language extensi-
bility. A key element of Honu’s design is an enforestation parsing
step, which converts a flat stream of tokens into an S-expression-
like tree, in addition to the initial “read” phase of parsing and in-
terleaved with the “macro-expand” phase. We present the design of
Honu, explain its parsing and macro-extension algorithm, and show
example syntactic extensions.

1. Introduction
An extensible programming language accommodates additions to
the language without requiring those additions to be adopted by a
standardization committee, approved by a core set of implemen-
tors, or imposed on all users of the language. Whether for domain-
specific languages or improved general-purpose constructs, exten-
sible languages offer the promise of accelerating language design,
leading to clearer and more correct programs by narrowing the gap
between an idea and its expression as a program.

As appealing as the idea sounds, only the Lisp family of lan-
guages has so far made extensibility work well enough to be widely
embraced by its users. The line of work on extensible syntax runs
from early Lisp days, through Scheme to better support compos-
able macros (Kohlbecker et al. 1986), and through Racket to sup-
port language variants as radical as static types (Flatt et al. 2012).
This success in the Lisp family of languages has been surprisingly
difficult to replicate in non-parenthetical syntaxes, however.

If language extensibility is not constrained to parentheses, then
it seems natural to design an extension mechanism that accommo-
dates as many grammar extensions as possible. SugarJ (Erdweg et
al. 2011), for example, leverages SDF’s (Heering et al. 1989) sup-
port for composable grammars to allow about as much flexibility
as current parsing technology can manage. This flexibility opens
the door to a range of complex grammar composition and ambigu-
ity problems, however. From a Lisp perspective, programmers may
end up worrying about technical details of character-by-character
parsing, instead of designing new expressive forms.

In this paper, we offer Honu as an example in the middle ground
between the syntactic minimalism of Lisp and maximal grammat-
ical freedom. Our immediate goal is to produce a syntax that is
more natural for many programmers than Lisp notation—most no-
tably, using infix notation for operators—but that is similarly easy

[Copyright notice will appear here once ’preprint’ option is removed.]

for programmers to extend. We explicitly trade expressiveness for
syntactic simplicity. More generally, we suggest that a language
has its own syntactic style, and successful extensions leverage that
consistency rather than subverting it. Syntactic consistency is espe-
cially obvious in Lisp-style languages, but curly-brace languages
have their own conventions that can be exploited and preserved by
extensions to the language.

To support infix operators and syntax unconstrained by paren-
theses, Honu adds a precedence-based parser to a Lisp-like pars-
ing pipeline. Since the job of this parsing stage is to turn a rela-
tively flat sequence of terms into a Lisp-like syntax tree, we call it
enforestation. Enforestation is not merely a preprocessing of pro-
gram text; it is integrated into the macro-expansion machinery so
that it obeys and leverages binding information to support hygiene,
macro-generating macros, and local macro binding—facilities that
have proven important for building expressive and composable lan-
guage extensions in Lisp, Scheme, and Racket.

2. Honu Overview
Honu’s syntax is similar to other languages that use curly braces
and infix syntax, such as C and Javascript. Honu’s macro support
is similar to Scheme’s, but the macro system is tailored to syntactic
extensions that continue the basic Honu style, including support for
declaring new infix operators.

2.1 Honu Syntax
As an introduction to Honu syntax, the following Honu code de-
clares a function to compute the roots of a quadratic equation.

1 function quadratic(a, b, c) {
2 var discriminant = sqr(b) - 4 * a * c
3 if (discriminant < 0) {
4 []
5 } else if (discriminant == 0) {
6 [-b / (2 * a)]
7 } else {
8 [-b / (2 * a), b / (2 * a)]
9 }
10 }

The function quadratic accepts three arguments and returns a
list containing the roots of the formula, if any. Line 1 starts a
function definition using function, which is similar to function
in Javascript. Line 2 declares a lexically scoped variable named
discriminant. Lines 4, 6, and 8 create lists containing zero, one,
and two elements, respectively. Honu has no return form; instead,
a function’s result is the value of its last evaluated expression. In
this case, lines 4, 6, and 8 are expressions that can produce the
function’s result.

As in Javascript, when function is used without a name, it
creates a anonymous function. The declaration of quadratic in
the example above is equivalent to

var quadratic = function(a, b, c) { }

1 2012/4/30

Semicolons in Honu optionally delimit expressions. Typically,
no semicolon is needed between expressions, because two expres-
sions in a sequence usually do not parse as a single expression.
Some expression sequences are ambiguous; for example, f(x)[y]
could either access of the y element of the result of f applied to x,
or it could be f applied to x followed by the creation of a list that
contains y. In such ambiguous cases, Honu parses the sequence as
a single expression, so a semicolon must be added if separate ex-
pressions are intended.

Curly braces create a block expression. Within a block, declara-
tions can be mixed with expressions, as in the declaration of dis-
criminant on line 2 of the example above. Declarations are treated
the same as expressions by the parser up until the last step of pars-
ing, in which case a declaration triggers a syntax error if it is not
within a block or at the top level.

2.2 Honu Macros
The Honu macro form binds a 〈name〉 to a pattern-based macro:
macro 〈name〉 (〈literals〉) { 〈pattern〉 } { 〈body〉 }

The 〈pattern〉 part of a macro declaration consists of a mixture of
concrete Honu syntax and variables that can bind to matching por-
tions of a use of the macro. An identifier included in the 〈literals〉
set is treated as a syntactic literal in 〈pattern〉 instead of as a pat-
tern variable, which means that a use of the macro must include the
literal as it appears in the 〈pattern〉. The 〈body〉 of a macro declara-
tion is an arbitrary Honu expression that computes a new syntactic
form to replace the macro use.1

One simple use of macros is to remove boilerplate. For example,
suppose we have a derivative function that computes the approx-
imate derivative of a given function:

1 function derivative(f) {
2 function (pt) {
3 (f(pt + 0.001) - f(pt)) / 0.001
4 }
5 }

We can use derivative directly on an anonymous function:

1 var df = derivative(function (x) { x * x - 5 * x + 8 })
2 df(10) // 15.099

If this pattern is common, however, we might instead provide a D
syntactic form so that the example can be written as

1 var df = D x, x * x - 5 * x + 8
2 df(10) // 15.099

As a macro, D can manipulate the given identifier and expression at
the syntactic level, putting them together with function:

1 macro D(){ z:id, math:expression } {
2 syntax(derivative(function (z) { math }))
3 }

The pattern for this macro is z:id, math:expression, which
matches an identifier, then a comma, and finally an arbitrary ex-
pression. In the pattern, z and math are pattern variables, while
id and expression are syntax classes (Felleisen and Culpepper
2010). Syntax classes play a role analogous to grammar produc-
tions, where macro declarations effectively extend expression.
The syntax classes id and expression are predefined in Honu.

Although the 〈body〉 of a macro declaration can be arbitrary
Honu code, it is often simply a syntax form. A syntax form
wraps a template, which is a mixture of concrete syntax and uses
of pattern variables. The result of a syntax form is a syntax object,
which is a first-class value that represents an expression. Pattern

1 The 〈body〉 of a macro is a compile-time expression, which is separated
from the run-time phase in Honu in the same way as for Racket (Flatt 2002).

variables in syntax are replaced with matches from the macro use
to generate the result syntax object.

The expansion of D is a call to derivative with an anonymous
function. The macro could be written equivalently as

1 macro D(){ z:id, math:expression } {
2 syntax({
3 function f(z) { math }
4 derivative(f)
5 })
6 }

which makes D expand to a block expression that binds a local f
and passes f to derivative. Like Scheme macros, Honu macros
are hygienic, so the local binding f does not shadow any f that
might be used by the expression matched to math.

The D example highlights another key feature of the Honu macro
system. Since the pattern for math uses the expression syntax
class, math can be matched to the entire expression x * x - 5
* x + 8 without requiring parentheses around the expression or
around the use of D. Furthermore, when an expression is substituted
into a template, its integrity is maintained in further parsing. For
example, if the expression 1+1 was bound to the pattern variable e
in e * 2, the resulting syntax object corresponds to (1 + 1) * 2,
not 1 + (1 * 2).

Using expression not only makes D work right with infix
operators, but it also makes it work with other macros. For example,
we could define a parabola macro to generate parabolic formulas,
and then we can use parabola with D:

1 macro parabola(){ x:id a:expression,
2 b:expression,
3 c:expression} {
4 syntax(a * x * x + b * x + c)
5 }
6

7 var d = D x, parabola x 1, -5, 8
8 d(10) // 15.099

The 〈pattern〉 part of a macro declaration can use an ellipsis to
match repetitions of a preceding sequence. The preceding sequence
can be either a pattern variable or literal, or it can be multiple terms
grouped by $. For example, the following trace macro prints each
term followed by evaluating the expression.

1 macro trace(){ expr ... } {
2 syntax($ printf("∼a -> ∼a\n", ’expr, expr) $...)
3 }

The ellipsis in the pattern causes the preceding expr to match a
sequence of terms. In a template, expr must be followed by an
ellipsis, either directly or as part of a group bracketed by $ and
followed by an ellipsis. In the case of trace, expr is inside a $
group, which means that one printf call is generated for each
expr.

All of our example macros so far immediately return a syntax
template, but the full Honu language is available for a macro imple-
mentation. For example, an extended trace macro might statically
compute an index for each of the expressions in its body and then
use the index in the printed results:

1 macro ntrace(){ expr ... } {
2 var exprs = syntax_to_list(syntax(expr ...))
3 var indexes = generate_indices(exprs)
4 with_syntax (idx ...) = indexes {
5 syntax($ printf("∼a -> ∼a\n", idx, expr) $...)
6 }
7 }

In this example, syntax(expr ...) generates a syntax object that
holds a list of expressions, one for each expr match, and the Honu
syntax_to_list function takes a syntax object that holds a se-
quence of terms and generates a plain list of terms. A gener-

2 2012/4/30

ate_indices helper function (not shown) takes a list and pro-
duces a list with the same number of elements but containing inte-
gers counting from 1. The with_syntax 〈pattern〉 = 〈expression〉
form binds pattern variables in 〈pattern〉 by matching against the
syntax objects produced by 〈expression〉, which in this case binds
idx as a pattern variable for a sequence of numbers. In the body
of the with_syntax form, the syntax template uses both expr and
idx to generate the expansion result.

2.3 Defining Syntax Classes
The syntax classes id and expression are predefined, but pro-
grammers can introduce new syntax classes. For example, to match
uses of a cond form like

cond
x < 3: "less than 3"
x == 3: "3"
x > 3: "greater than 3"

we could start by describing the shape of an individual cond clause.
The Honu pattern form binds a new syntax class:

pattern 〈name〉 (〈literals〉) { 〈pattern〉 }

A pattern form is similar to a macro without an expansion 〈body〉.
Pattern variables in 〈pattern〉 turn into sub-pattern names that ex-
tend a pattern variable whose class is 〈name〉.

For example, given the declaration of a cond_clause syntax
class,

1 pattern cond_clause ()
2 { check:expression : body:expression }

we can use cond_clause form pattern variables in the definition of
a cond macro:

1 macro cond(){ first:cond_clause
2 rest:cond_clause ... } {
3 syntax(if (first_check) {
4 first_body
5 } $ else if (rest_check) {
6 rest_body
7 } $...)
8 }

Since first has the syntax class cond_clause, then it matches
an expression–colon–expression sequence. In cond’s template,
first_check accesses the first of those expressions, since check
is the name given to the first expression match in the definition
of cond_clause. Similarly, first_body accesses the second ex-
pression within the first match. The same is true for rest, but
since rest is followed in the macro pattern with an ellipsis, it
corresponds to a sequence of matches, so that rest_check and
rest_body must be under an ellipsis in the macro template.

Pattern variables that are declared without an explicit syntax
class are given a default class that matches a raw term: an atomic
syntactic element, or a set of elements that are explicitly grouped
with parentheses, square brackets, or curly braces.

2.4 Honu Operators
In addition to defining new macros that are triggered through a
prefix keyword, Honu allows programmers to declare new binary
and unary operators. Binary operators are always infix, while unary
operators are prefix, and an operator can have both binary and unary
behaviors.

The operator form declares a new operator:

operator 〈name〉 〈prec〉 〈assoc〉 〈binary transform〉 〈unary transform〉

The operator precedence 〈prec〉 is specified as a non-negative ra-
tional number, while the operator’s associativity 〈assoc〉 is either
left or right. The operator’s 〈binary transform〉 is a function that

is called during parsing when the operator is used in a binary po-
sition; the function receives two syntax objects for the operator’s
arguments, and it produces a syntax object for the operator appli-
cation. Similarly, an operator’s 〈unary transform〉 takes a single
syntax object to produce an expression for the operator’s unary ap-
plication.

The binary_operator and unary_operator forms are short-
hands for defining operators with only a 〈binary transform〉 or
〈unary transform〉, respectively:
binary_operator 〈name〉 〈prec〉 〈assoc〉 〈binary transform〉

unary_operator 〈name〉 〈prec〉 〈unary transform〉

A unary operator is almost the same as a macro that has a single
expression subform. The only difference between a macro and a
unary operator is that the operator has a precedence level, which
can affect the way that expressions using the operator are parsed. A
macro effectively has a precedence level of 0. Thus, if m is defined
as a macro, then m 1 + 2 parses like m (1 + 2), while if m is a
unary operator with a higher precedence than +, m 1 + 2 parses
like (m 1) + 2.

As a example binary operator, we can define a raise operator
that raises the value of the expression on the left-hand side to the
value of the expression on the right-hand side:

1 binary_operator raise 10 ’left
2 function (left, right){
3 syntax(pow(left, right))
4 }

The precedence level of raise is 10, and it associates to the left.
Since 10 is higher than the precedence of + and -, the expression
2 + 8 raise 2 - 1

raises 8 to the second power before adding 2 and subtracting 1.
Naturally, newly declared infix operators can appear in subex-

pressions for a macro use:
var d = D x, x raise 4 + x raise 2 - 3

We can define another infix operator for logarithms and com-
pose it with the raise operator. Assume that make_log generates
an expression that takes the logarithm of the left-hand side using
the base of the right-hand side:
binary_operator 5 ’left lg make_log

x raise 4 lg 3 + x raise 2 lg 5 - 3

Since raise has higher precedence than lg, and since both raise
and lg have a higher precedence than the built-in + operator, the
parser groups the example expression as
((x raise 4) lg 3) + ((x raise 2) lg 5) - 3

As the raise and lg examples illustrate, any identifier can be
used as an operator. Honu does not distinguish between operator
names and other identifiers, which means that raise can be an op-
erator name and + can be a variable name. Furthermore, Honu has
no reserved words and any binding—variable, operator, or syntac-
tic form—can be shadowed. This flexible treatment of identifiers
is enabled by the interleaving of certain parsing tasks with binding
resolution, as we discuss in the next section.

3. Parsing Honu
Honu parsing relies on three layers: a reader layer, an enforestation
layer, and a parsing layer proper that drives enforestation, binding
resolution, and macro expansion. The first and last layers are di-
rectly analogous to parsing layers in Lisp and Scheme, and so we
describe Honu parsing in part by analogy to Scheme, but the middle
layer is unique to Honu.

3 2012/4/30

3.1 Grammar
A BNF grammar usually works well to describe the syntax of a
language with a fixed syntax, such as Java. BNF is less helpful for
a language like Scheme, whose syntax might be written as
〈expression〉 ::= 〈literal〉 | 〈identifier〉

| (〈expression〉 〈expression〉*)
| (lambda (〈identifier〉*) 〈expression〉+)
| (if 〈expression〉 〈expression〉 〈expression〉)
| ...

but such a grammar would be only a rough approximation. Because
Scheme’s set of syntactic forms is extensible via macros, the true
grammar at the level of expressions is closer to
〈expression〉 ::= 〈literal〉 | 〈identifier〉

| (〈expression〉 〈expression〉*)
| (〈form identifier〉 〈term〉*)

The (〈expression〉 〈expression〉*) production captures the de-
fault case when the first term after a parenthesis is not an identi-
fier that is bound to a syntactic term, in which case the expression
is treated as a function call. Otherwise, the final (〈form identi-
fier〉 〈term〉*) production captures uses of lambda and if as well
as macro-defined extensions. Putting a lambda or if production
would be misleading, because the name lambda or if can be shad-
owed or redefined by an enclosing expression; an enclosing term
might even rewrite a nested lambda or if away. In exchange for the
loss of BNF and a different notion of parsing, Scheme programmers
gain an especially expressive, extensible, and composable notation.

The syntax of Honu is defined in a Scheme-like way, but with
more default structure than Scheme’s minimal scaffolding. The
grammar of Honu is roughly as follows:
〈program〉 ::= 〈sequence〉
〈expression〉 ::= 〈literal〉 | 〈identifier〉

| 〈unary operator〉 〈expression〉
| 〈expression〉 〈binary operator〉 〈expression〉
| 〈expression〉 (〈comma-sequence〉)
| (〈expression〉)
| 〈expression〉 [〈expression〉]
| [〈comma-sequence〉]
| [〈expression〉 : 〈expression〉 = 〈expression〉]
| { 〈sequence〉 }
| 〈form identifier〉 〈term〉*

〈comma-sequence〉 ::= 〈expression〉 [,] 〈comma-sequence〉
| 〈expression〉

〈sequence〉 ::= 〈expression〉 [;] 〈sequence〉
| 〈expression〉

This grammar reflects a mid-point between Scheme-style syntax
and traditional infix syntax:

• Unary and infix binary operations are supported through the
extensible 〈unary operator〉 and 〈binary operator〉 productions.

• The 〈expression〉 (〈comma-sequence〉) production plays the
same role as Scheme’s default function-call production, but in
traditional algebraic form.

• The (〈expression〉) production performs the traditional role
of parenthesizing an expression to prevent surrounding opera-
tors with higher precedences from grouping with the constituent
parts of the expression.

• The 〈expression〉 [〈expression〉] production provides a de-
fault interpretation of property or array access.

• The [〈comma-sequence〉] production provides a default in-
terpretation of square brackets without a preceding expression
as a list creation mechanism.

• The [〈expression〉 : 〈expression〉 = 〈expression〉] produc-
tion provides a default interpretation of square brackets with :
and = as a list comprehension.

• The { 〈sequence〉 } production starts a new sequence of ex-
pressions that evaluates to the last expression in the block.

• Finally, the 〈form identifier〉 〈term〉* production allows exten-
sibility of the expression grammar.

In the same way that Scheme’s default function-call interpre-
tation of parentheses does not prevent parentheses from having
other meanings in a syntactic form, Honu’s default interpretation
of parentheses, square brackets, curly braces, and semi-colons does
not prevent their use in different ways within a new syntactic form.

3.2 Reading
The Scheme grammar relies on an initial parsing pass by a reader to
form 〈term〉s. The Scheme reader plays a role similar to token anal-
ysis for a language with a static grammar, in that it distinguishes
numbers, identifiers, string, commas, parentheses, comments, etc.
Instead of a linear sequence of tokens, however, the reader pro-
duces a tree of values by matching parentheses. Values between a
pair of matching parentheses are grouped as a single term within
the enclosing term. In Honu, square brackets and curly braces are
distinguished from parentheses, but they similarly matched.

Ignoring the fine details of parsing numbers, strings, identifiers,
and the like, the grammar recognized by the Honu reader is
〈term〉 ::= 〈number〉 | 〈string〉 | 〈identifier〉 | 〈comma〉 | ...

| (〈term〉*) | [〈term〉*] | { 〈term〉* }

For example, given the input
make(1, 2, 3)

the reader produces a sequence of two 〈term〉s: one for make,
and another indicating parentheses. The latter contains five nested
〈term〉s: 1, a comma, 2, a comma, and 3.

In both Scheme and Honu, the parser consumes a 〈term〉 rep-
resentation as produced by the reader, and it expands macros in
the process of parsing 〈term〉s into 〈expression〉s. The 〈term〉s used
during parsing need not have originated from the program source
text, however; macros that are triggered during parsing can synthe-
size new 〈term〉s out of symbols, lists, and other literal values. The
ease of synthesizing 〈term〉 representations—and the fact that they
are merely 〈term〉s and not fully parsed ASTs—is key to the ease
of syntactic extension in Scheme and Honu.

In the case of Scheme, the reader’s grouping of nested 〈term〉s
via parentheses is another crucial ingredient toward making lan-
guage extensions compose, since parentheses consistently delimit
syntactic forms independent from other aspects of parsing the term.
In Honu, the reader’s matching of parentheses plays a lesser role,
since Honu supports infix operators and other syntactic forms that
are not fully parenthesized.

3.3 Enforestation
To handle infix syntax, the Honu parser relies on an enforestation
phase that converts a relatively flat sequence of 〈term〉s into a more
Scheme-like tree of nested expressions. Enforestation handles op-
erator precedence and the relatively delimiter-free nature of Honu
syntax, and it is macro-extensible. After a layer of enforestation,
Scheme-like macro expansion takes over to handle binding, scope,
and cooperation among syntactic forms. Enforestation and expan-
sion are interleaved, which allows the enforestation process to be
sensitive to bindings.

Enforestation extracts a sequence of terms produced by the
reader to create a tree term, which is ultimately produced by
a primitive syntactic form or one of the default productions of
〈expression〉, such as the function-call or list-comprehension pro-
duction. Thus, the set of 〈tree term〉s effectively extends the 〈term〉
grammar although 〈tree term〉s are never produced by the reader:
〈term〉 ::= ...

4 2012/4/30

| 〈tree term〉
Enforestation is driven by an enforest function that extracts

the first expression from an input stream of 〈term〉s. The enfor-
est function incorporates aspects of the precedence parsing algo-
rithm by Pratt (1973) to keep track of infix operator parsing and
precedence. Specifically, the enforest function has the following
contract:
enforest : 〈term〉* (〈tree term〉 → 〈tree term〉) 〈prec〉

→ (〈tree term〉, 〈term〉*)

The arguments to enforest are as follows:

• input — a list of 〈term〉s for the input stream;
• combine — a function that takes a 〈tree term〉 for an expression

and produces the result 〈tree term〉; this argument is initially
the identity function, but operator parsing leads to combine
functions that close over operator transformers;

• precedence — an integer representing the precedence of the
pending operator combination combine, which determines
whether combine is used before or after any further binary op-
erators that are discovered; this argument starts at 0, which
means that the initial combine is delayed until all operators are
handled.

In addition, enforest is implicitly closed over a mapping from
identifiers to macros, operators, primitive syntactic forms, and de-
clared variables. The result of enforest is a tuple that pairs a tree
term representing an 〈expression〉 with the remainder terms of the
input stream.

If the input starts with a tree term, then enforest effectively
checks for a match with one of the 〈expression〉 grammar produc-
tions that themselves start with 〈expression〉. Let init be the tree
term that starts input, and the second element of input determines
how enforest proceeds:

• If the second term in input is an identifier that is bound as a bi-
nary operator, then enforest tail-calls itself, dropping the first
two terms of input. The new combine and precedence for the
recursive call depend on how the found operator’s precedence
compares to the current precedence.
If the found operator’s precedence is less or equal to the current
precedence, then combine is applied to init to produce left; the
new combine function takes right and applies the operator’s
binary transformer to left and right, while precedence remains
unchanged.
If the found operator’s precedence is greater than the current
precedence, then a new combine function takes a right and
applies the operator’s transformer to init and right; the result
is then passed to the original combine. Meanwhile, precedence
becomes the found operator’s precedence.

• If the second term in input is a parenthesized sequence of terms,
then the input is parsed as a function call. The parenthesized
sequence is processed through recursive calls to enforest,
checking for the optional comma after each expression, until
the subsequence is exhausted. Each recursive call to enforest
is given the remainder of the parenthesized terms, the identity
function for combine, and zero for predecence.
The init and the tree terms from recursive calls are grouped
into a function-call tree term, which is supplied to combine
to produce the enforest result. The remaining terms in input
(after the init and the parenthesized term) are also returned.

• If the second term in input is a square-bracketed sequence of
terms, then the input is parsed as an array reference. The brack-
eted sequence is processed through a recursive call to enforest
with the identity function for combine and zero for precedence.

A single call to enforest must exhaust the subsequence (or
else a syntax error is reported).
The bracketed expression is combined with init into a array-
reference tree term, which is supplied to combine to produce the
result. The remaining terms of input (after init and the bracketed
term) are also returned.

• Otherwise, the second term in input is not a binary operator,
parenthesized sequence, or square-bracketed sequence; enfor-
est applies combine to init and returns the result. The rest of
input (after init) is also returned.

Otherwise, the first term in input is not a tree term, and the enfor-
est function proceeds by case analysis of the term:

• If the input starts with a term that can be used as a literal,
such as a number or string, then the literal is turned into a tree
term and passed to combine, whose result becomes the result of
enforest along with the rest of input.

• If the input starts with an identifier that is bound as a declared
variable, then the identifier is turned into a tree term for the vari-
able reference and passed to combine, whose result becomes the
result of enforest along with the rest of input.

• If the input starts with an identifier that is bound as a unary
operator, then enforest tail-calls itself with the rest of input.
A new combine accepts a term next and passes it to the unary
operator’s transformer; the result of the transformer is passed
on to the original combine. Meanwhile, precedence for the
recursive call is the maximum of the current precedence and
the operator’s precedence.

• If the input starts with a parenthesized or square-bracketed se-
quence of terms, then the parenthesized sequence is enforested
through recursive calls to enforest. In the case of parenthe-
ses, the result must be a single tree term, and it is returned. In
the case of square brackets, the results are packaged into a list-
creating tree term.

• If the input starts with a curly-braced subsequence of terms, the
terms are packaged as-is into a tree term representing a block
expression. Further enforestation is deferred until it is triggered
by parse; see section 3.5.

• If the input starts with a 〈form identifier〉 that is bound to a
macro, then the macro is applied.
In its most primitive form, a macro transformer has the contract

〈term〉*→ (〈term〉, 〈term〉*)

That is, it takes the input sequence and produces a single term
for the expansion of the macro, plus the remainder of the input
stream that is not consumed by the macro.
The enforest function accepts the results from the macro
transformer and then tail-calls itself recursively, flattening the
result (〈term〉, 〈term〉*) tuple back to a 〈term〉* sequence for in-
put, and keeping the combine and precedence intact. Normally,
the initial 〈term〉 result from a macro is parenthesized, so that
it is kept intact as an expression during further enforestation—
in particular, syntax produces a parenthesized term—although
low-level macros are not currently constrained to that behavior.
A macro transformer can itself call enforest to tease out sub-
expressions from the input stream. Normally, recursive calls
to enforest are triggered through the use of the expression
syntax class, as we discuss in section 3.4.

• If the input starts with a 〈form identifier〉 that is bound to a
primitive syntactic form, then parsing proceeds the same as for a

5 2012/4/30

macro, but the transformer for a primitive form always produces
a tree term.
The function form acts as a Honu macro when it is used
as a declaration, and it expands to a var declaration with a
function expression in that case. When function is used as
an expression (i.e., an anonymous function), then it instead
produces an expression tree term.

As an example, with the input

1+2*3-f(10)

enforestation starts with the entire sequence of terms, the identity
function, and zero:

enforest(1 + 2 * 3 - f (10), identity, 0)

The first term, an integer, is converted to a literal tree term, and then
enforest recurs for the rest of the terms. We show a tree term in
angle brackets:

enforest(<literal: 1> + 2 * 3 - f (10), identity, 0)

Since the input stream now starts with a tree term, enforest checks
the second element of the stream, which is a binary operator with
precedence 1. Enforestation therefore continues with a new com-
bine function that takes a tree term for the operator’s right-hand
side and builds a tree term for the binary operation:

enforest(2 * 3 - f (10), combine1, 1)
where combine1(t) = <bin: +, <literal: 1>, t>

The first term of the new stream starts with 2, which is converted to
a literal tree term:

enforest(<literal: 2> * 3 - f (10), combine1, 1)

The leading tree term is again followed by a binary operator, this
time with precedence 2. Since the precedence of the new operator is
higher than the current precedence, a new combine function builds
a binary-operation tree term for * before chaining to the current
combine function:

enforest(3 - f (10), combine2, 2)
where combine2(t) = combine1(<bin: *, <literal: 2>, t>)

The current input sequence once again begins with a literal:

enforest(<literal: 3> - f (10), combine2, 2)

The binary operator - has precedence 1, which is less than the cur-
rent precedence. The current combine function is therefore applied
to <literal: 3>, and the result becomes the new tree term at the
start of the input. We abbreviate this new tree term:

enforest(<expr: 1+2*3> - f (10), identity, 0)
where <expr: 1+2*3> = <bin: +, <literal: 1>,

<bin: *, <literal: 2>,
<literal: 3>>

Since the current precedence is back to 0, the precedence of - is
now higher than the current precedence:

enforest(f (10), combine3, 1)
where combine3(t) = <bin: -, <expr: 1+2*3>, t>

Assuming that f is bound as a variable, the current stream is
enforested as a function-call tree term. In the process, a recur-
sive call enforest(10, identity, 0) immediately produces
<literal: 10> for the argument sequence, so that the non-nested
enforest continues as

enforest(<call: <id: f>, <literal: 10>>, combine3, 1)

Since the input stream now contains only a tree term, it is passed to
the current combine function, producing the result tree term:

<bin: -, <expr: 1+2*3>, <call: <id: f>, <literal: 10>>>

3.4 Macros and Patterns
From the perspective of enforest, a macro is a function that
consumes a list of terms, but Honu programmers normally do not
implement macros at this low level. Instead, Honu programmers
write pattern-based macros using the macro form that (as noted in
section 2.2) has the shape
macro 〈name〉 (〈literals〉) { 〈pattern〉 } { 〈body〉 }

The macro form generates a low-level macro by compiling the
〈pattern〉 to a matching and destructuring function on an input
sequence of terms. This generated matching function automatically
partitions the sequence into the terms that are consumed by the
macro and the leftover terms that follow the pattern match.

Literal identifiers and delimiters in 〈pattern〉 are matched to
equivalent elements in the input sequence. A parenthesized se-
quence in 〈pattern〉 corresponds to matching a single parenthesized
term whose subterms match the parenthesized pattern sequence,
and so on. A pattern variable associated to a syntax class corre-
sponds to calling a function associated with the syntax class to ex-
tract a match from the sequence plus the remainder of the sequence.

For example, the macro
macro parabola(){ x:id a:expression,

b:expression,
c:expression} {

syntax(a * x * x + b * x + c)
}

expands to the low-level macro function
function(terms) {
var x = first(terms)
var [a_stx, after_a] = get_expression(rest(terms))
check_equal(",", first(after_a))
var [b_stx, after_b] = get_expression(rest(after_a))
check_equal(",", first(after_b))
var [c_stx, after_c] = get_expression(rest(after_b))
// return new term plus remaining terms:
[with_syntax a = a_stx, b = b_stx, c = c_stx {

syntax(a * x * x + b * x + c)
}, after_c]

}

The get_expression function associated to the expression syn-
tax class is simply a call back into enforest:
function get_expression(terms) {
enforest(terms, identity, 0)

}

New syntax classes declared with pattern associate the syntax
class name with a function that similarly takes a term sequence and
separates a matching part from the remainder, packaging the match
so that its elements can be extracted by a use of the syntax class. In
other words, the matching function associated with a syntax class
is similar to the low-level implementation of a macro.

3.5 Parsing
Honu parsing repeatedly applies enforest on a top-level sequence
of 〈term〉s, detecting and registering bindings along the way. For
example, a macro declaration that appears at the top level must
register a macro before later 〈term〉s are enforested, since the macro
may be used within those later 〈term〉s.

Besides the simple case of registering a macro definition be-
fore its use, parsing must also handle mutually recursive defini-
tions, such as mutually recursive functions. Mutual recursion is
handled by delaying the parsing of blocks (such as function bod-
ies) until all of the declarations in the enclosing scope have been
registered, which requires two passes through a given scope level.
Multiple-pass parsing of declarations and expressions has been
worked out in detail for macro expansion in Scheme (Sperber 2011)

6 2012/4/30

and Racket (Flatt et al. 2012), and Honu parsing uses the same ap-
proach.

Honu not only delays parsing of blocks until the enclosing
layer of scope is resolved, it even delays the enforestation of block
contents. As a result, a macro can be defined after a function in
which the macro is used. Along the same lines, a macro can be
defined within a block, limiting the scope of the macro to the block
and allowing the macro to expand to other identifiers that are bound
within the block.

Flexible ordering and placement of macro bindings is crucial to
the implementation of certain kinds of language extensions (Flatt et
al. 2012). For example, consider a cfun form that supports macros
with contracts:
cfun quadratic(num a, num b, num c) : listof num {
....

}

The cfun form can provide precise blame tracking (Findler and
Felleisen 2002) by binding quadratic to a macro that passes
information about the call site to the raw quadratic function. That
is, the cfun macro expands to a combination of function and
macro declarations. As long as macro declarations are allowed with
the same placement and ordering rules as function declarations,
then cfun can be used freely as a replacement for function.

3.5.1 Parsing Algorithm
The contract of the Honu parse function is
parse : 〈term〉* 〈bindings〉 → 〈AST〉*

That is, parse takes a sequence of 〈term〉s and produces a sequence
of 〈AST〉 records that can be interpreted. Initially, parse is called
with an empty mapping for its 〈bindings〉 argument, but nested
uses of parse receive a mapping that reflects all lexically enclosing
bindings.

Since parse requires two passes on its input, it is implemented
in terms of a function for each pass, parse1 and parse2:
parse1 : 〈term〉* 〈bindings〉 → (〈tree term〉*, 〈bindings〉)
parse2 : 〈tree term〉* 〈bindings〉 → 〈AST〉*

The parse1 pass determines bindings for a scope, while parse2
completes parsing of the scope using all of the bindings discovered
by parse1.

The parse1 function takes input as the 〈term〉 sequence and
bindings as the bindings found so far. If input is empty, then parse1
returns with an empty tree term sequence and the given bindings.
Otherwise, parse1 applies enforest to input, the identity function,
and zero; more precisely, parse1 applies an instance of enforest
that is closed over bindings. The result from enforest is form,
which is a tree term, and rest, which is the remainder of input that
was not consumed to generate form. Expansion continues based on
case analysis of form:

• If form is a var declaration of identifier, then a variable map-
ping for identifier is added to bindings, and parse1 recurs with
rest; when the recursive call returns, form is added to (the first
part of) the recursion’s result.

• If form is a macro or pattern declaration of identifier, then
the macro or syntax class’s low-level implementation is created
and added to bindings as the binding of identifier. Generation
of the low-level implementation may consult bindings to extract
the implementations of previously declared syntax classes. The
parse1 function then recurs with rest and the new bindings.
If parse1 was called for the expansion of a module body, then
an interpretable variant of form is preserved in case the macro
is exported. Otherwise, form is no longer needed, since the
macro or syntax-class implementation is recorded in the result
bindings.

• If form is an expression, parse1 recurs with rest and unchanged
bindings; when the recursive call returns, form is added to (the
first part of) the recursion’s result.

The results from parse1 are passed on to parse2. The parse2
function maps each form in its input tree term to an AST:

• If form is a var declaration, the right-hand side of the declara-
tion is parsed through a recursive call to parse2. The result is
packaged into a variable-declaration AST node.

• If form is a function expression, the body is enforested and
parsed by calling back to parse, passing along parse2’s
〈bindings〉 augmented with a variable binding for each function
argument. The result is packaged into a function- or variable-
declaration AST node.

• If form is a block expression, then parse is called for the block
body in the same way as for a function body (but without
argument variables), and the resulting ASTs are packaged into
a single sequence AST node.

• If form is an identifier, then it must refer to a variable, since
macro references are resolved by enforest. The identifier is
compiled to a variable-reference AST.

• If form is a literal, then a literal AST node is produced.
• Otherwise, form is a compound expression, such as a function-

call expression. Subexpressions are parsed by recursively call-
ing parse2, and the resulting ASTs are combined into a suitable
compound AST.

3.5.2 Parsing Example
As an example, consider the following sequence in an environment
where identifiers such as macro are bound as usual:

macro info(at){ x:id, math:expression
at point:expression } {

syntax({
var f = function(x) { math }
printf("at ∼a dx ∼a\n", f(point))

})
}

info x, x*x+2*x-1 at 12

Initially, this program corresponds to a sequence of 〈terms〉 starting
with macro, info, and (at). The first parsing step is to enforest one
form, and enforestation defers to the primitive macro, which con-
sumes the next four terms. The program after the first enforesta-
tion is roughly as follows, where we represent a tree term in angle
brackets as before:

<macro declaration: info, ...>

info x, x*x+2*x-1 at 12

The macro-declaration tree term from enforest causes parse1 to
register the info macro in its bindings, then parse1 continues with
enforest starting with the info identifier. The info identifier is
bound as a macro, and the macro’s pattern triggers the following
actions:

• it consumes the next x as an identifier;
• it consumes the comma as a literal;
• it starts enforesting the remaining terms, which succeeds with a

tree term for x*x+2*x-1;
• it consumes at as a literal;
• starts enforesting the remaining terms as an expression, again,

which succeeds with the tree term <literal: 12>.

7 2012/4/30

Having collected matches for the macro’s pattern variables, the
info macro’s body is evaluated to produce the expansion, so that
the overall sequence becomes
{
var f = function(x) { <expr: x*x+2*x-1> }
printf("at ∼a dx ∼a\n", f(<literal: 12>))

}

Macro expansion of info did not produce a tree term, so enforest
recurs. At this point, the default production for curly braces takes
effect, so that the content of the curly braces is preserved in a block
tree term. The block is detected as the enforest result by parse1,
which simply preserves it in the result tree term list. No further
terms remain, so parse1 completes with a single tree term for the
block.

The expand2 function receives the block, and it recursively
parses the block. That is, parse is called to process the sequence
var f = function(x) { <expr: x*x+2*x-1> }
printf("at ∼a dx ∼a\n", f(<literal: 12>))

The first term, var, is bound to the primitive declaration form,
which consumes f as an identifier, = as a literal, and then enforests
the remaining terms as an expression.

The remaining terms begin with function, which is is the prim-
itive syntactic form for functions. The primitive function form
consumes the entire expression to produce a tree term represent-
ing a function. This tree term is produced as the enforestation that
var demanded, so that var can produce a tree term representing the
declaration of f. The block body is therefore to the point
<function declaration: f, <function: x, <expr: x*x+2*x-1>>>
printf("at ∼a dx ∼a\n", f(<literal: 12>))

When parse1 receives this function-declaration tree term, it regis-
ters f as a variable. Then parse1 applies 〈enforest〉 on the terms
starting with printf, which triggers the default function-call pro-
duction since printf is bound as a variable. The function-call
production causes enforestation of the "at ∼a dx ∼a\n" and
f(<literal: 12>) sequences to a literal string and function-call
tree term, respectively. The result of parse1 is a sequence of two
tree terms:
<function declaration: f, <function: x, <expr: x*x+2*x-1>>>
<call: <var: printf>,

<literal: "at ∼a dx ∼a\n">,
<call <var: f>, <literal: 12>>>

The parse2 phase at this level forces enforestation and parsing of
the function body, which completes immediately, since the body
is already a tree term. Parsing similarly produces an AST for the
body in short order, which is folded into a AST for the function
declaration. Finally, the function-call tree term is parsed into nested
function-call ASTs.

3.5.3 Parsing as Expansion
For completeness, we have described Honu parsing as a stand-alone
and Honu-specific process. In fact, the Honu parser implementation
leverages the existing macro-expansion machinery of Racket. For
example, the Honu program
#lang honu
1+2

is converted via the Honu reader to
#lang racket
(honu-block 1 + 2)

The honu-block macro is implemented in terms of enforest:
(define-syntax (honu-block stx)
(define terms (cdr (syntax->list stx)))
(define-values (form rest) (enforest terms identity 0))

(if (empty? rest)
form
#‘(begin #,form (honu-block . #,rest))))

where #‘ and #, are forms of quasiquote and unquote lifted to
the realm of lexically scoped S-expressions.

The strategy of treating enforest’s first result as a Racket form
works because enforest represents each tree term as a Racket S-
expression. The tree term for a Honu var declaration is a Racket
define form, function call and operator applications are repre-
sented as Racket function calls, and so on.

Expanding honu-block to another honu-block to handle fur-
ther terms corresponds to the parse1 recursion in the stand-alone
description of Honu parsing. Delaying enforestation and parsing to
parse2 corresponds to using honu-block within a tree term; for
example, the enforestation of
function(x) { D y, y*x}

is
(lambda (x) (honu-block D y |,| y * x))

When such a function appears in the right-hand side of a Racket-
level declaration, Racket delays expansion of the function body
until all declarations in the same scope are processed, which allows
a macro definition of D to work even if it appears after the function.

Honu macro and pattern forms turn into Racket define-
syntax forms, which introduce expansion-time bindings. The en-
forest function and pattern compilation can look up macro and
syntax-class bindings using Racket’s facilities for accessing the
expansion-time environment (Flatt et al. 2012).

Besides providing an easy way to implement Honu parsing,
building on Racket’s macro expander means that the more general
facilities of the expander can be made available to Honu program-
mers. In particular, Racket’s compile-time reflection operations can
be exposed to Honu macros, so that Honu macros can cooperate in
the same ways as Racket macros to implement pattern matchers,
class systems, type systems, and more.

4. Extended Example
Using Honu macros, we can build a class system on top of a
primitive form for defining records. Classes use a single inheritance
hierarchy with the root being the class object. Each class has a
single constructor whose parameters are given next to the class
name, and method calls use call:
〈class〉 ::= class 〈identifier〉 (〈identifier〉*)

extends 〈identifier〉 (〈identifier〉*)
{ 〈field〉* 〈method〉* }

〈field〉 ::= var 〈identifier〉 = 〈expression〉
〈method〉 ::= function 〈identifier〉 (〈identifier〉*) { 〈sequence〉 }
〈expression〉 ::= ...

| call 〈expression〉 〈identifier〉 (〈sequence〉)
| this

For example, we can define a fish class whose instances start with
a given weight, and a picky_fish subclass whose instances start
with a fraction of food that they are willing to eat:
class fish(weight) extends object() {
function eat_all(amt) { weight = weight + amt }
function eat(amt) { call this eat_all(amt) }
function get_weight() { weight }

}
class picky_fish(fraction) extends fish(weight) {
function eat(amt) {

call this eat_all(fraction * amt)
}

}
var c = picky_fish(1/2, 5)
call c eat(8)
call c get_weight()

8 2012/4/30

The class macro implementation relies on syntax classes for
〈field〉 and 〈method〉 declarations:

1 pattern field_clause (var =) {
2 var name:identifier = value:expression
3 }
4 pattern method_clause (function) {
5 function name:identifier(argument:identifier ...){
6 body ...
7 }
8 }

The field_clause syntax class uses var and = as literals, match-
ing an identifier between them and an expression afterward. In the
method_class syntax class, function is a literal; the body of a
method does not have a syntax class, which means that it is left
unparsed when the method_clause pattern is parsed. The class
macro uses these syntax classes in its pattern:

9 macro extends(){ } { error("illegal use of keyword") }
10

11 macro class (function extends){
12 name:identifier(arg:identifier ...)
13 extends parent:identifier(parent_arg:identifier ...){
14 vars:field_clause ...
15 meths:method_clause ...
16 }
17 } {
18 var name_stx = first(syntax_to_list(syntax(name)))
19 var this_stx = datum_to_syntax(name_stx, ’this, name_stx)
20 var meth_names = syntax_to_list(syntax(meths_name_x ...))
21 var function_names = [syntax_to_string(name):
22 name = meth_names]
23 // continued below
24 }

Line 9 declares extends for use as a literal in the class macro,
while a use of extends in an expression position triggers a syntax
error. Lines 12–16 specify the pattern for uses of class. Line 18
extracts the class name as a syntax object, so that a this identifier
on line 11 can be given (unhygienically) the same lexical context
as the class name although a more robust solution as in Barzilay
et al. (2011) could have been used. Lines 20–22 extract the class’s
method names and converts them to strings.

Line 23 above continues as follows to build the expansion of a
class form:

23 with_syntax this = this_stx,
24 (function_name ...) = function_names, {
25 syntax(var name = {
26 struct implementation{vtable, super, $ arg ,
27 $... $ vars_name , $...}
28 function (arg ... parent_arg ...){
29 var vtable = mutable_hash()
30 $ hash_update(vtable, function_name,
31 function(this, methods_argument ...){
32 methods_body ... }) $...
33 implementation(vtable, parent(parent_arg ...),
34 $ arg, $... $ vars_value , $...)
35 }
36 })
37 }

The with_syntax form at line 23 binds this as a pattern vari-
able to the identifier syntax object in this_stx, and it binds func-
tion_name as a pattern variable for sequence of function names
from function_names. Lines 26–35 implement the class. The re-
sult of the class macro is a constructor function bound to the name
of the class. The constructor accepts the parameters declared next
to the class name, as well as parameters declared next to the super
class name; it instantiates a record containing the class parameters
and an instance of the super class. The class’s virtual method table
is created by mapping each function name to a function that accepts

the original method parameters as well as an extra this argument.
Delaying the parsing of method bodies (in the method_clause
pattern) ensures that this is in scope before the method body is
parsed.

The object root class is defined directly as a function:
function object() {
struct dummy{vtable, super}
dummy(mutable_hash(), false)

}

Method calls rely on a simple find_method lookup function, which
we omit for space, but we show the call macro for calling a
method:

39 macro call(){ object:expression
40 name:identifier(arg:expression ...) } {
41 var name_stx = first(syntax_to_list(syntax(name)))
42 with_syntax name_str = syntax_to_string(name_stx) {
43 syntax({
44 var target = object
45 var method = find_method(target, name_str)
46 method(target, arg ...)
47 })
48 }
49 }

The pattern on lines 39–40 matches an expression for the object
whose method is being called, an identifier for the method name,
and expressions for the arguments. The body of the macro converts
the method name to a string on lines 41–42. The expansion of the
macro on lines 43–47 is a block that binds target to the target
object of the method call, finds the called method in the target
object, and then calls the method passing along the target object
as the first argument.

5. Related Work
C++ templates are most successful language-extension mechanism
outside of the Lisp tradition. Like Honu macros, C++ templates al-
low only constrained extensions of the language, since template in-
vocations have a particular syntactic shape. Honu macros are more
flexible than C++ templates, allowing extensions to the language
that have the same look as built-in forms. In addition, because
Honu macros can be written in Honu instead of using only pattern-
matching constructs, complex extensions are easier to write and can
give better syntax-error messages than in C++’s template language.
C++’s support for operator overloading allows an indirect imple-
mentation of infix syntactic forms, but Honu allows more flexibility
for infix operators, and Honu does not require an a priori distinction
between operator names and other identifiers.

Honu macro definitions integrate with the parser without having
to specify grammar-related details. Related systems, such as Sug-
arJ (Erdweg et al. 2011), Xoc (Cox et al. 2008), and Polyglot (Nys-
trom et al. 2003) require the user to specify which grammar produc-
tions to extend, which can be an additional burden for the program-
mer. Xoc and SugarJ use a GLR (Tomita 1985) parser that enables
them to extend the the class of tokens, which allows a natural em-
bedding of domain-specific languages. Ometa (Warth and Piumarta
2007) and Xtc (Grimm 2006) are similar in that they allow the user
to extend how the raw characters are consumed, but they do not
provide a macro system. Honu does not contain a mechanism for
extending its lexical analysis of the raw input stream, because Honu
implicitly relies on guarantees from the reader about the structure
of the program to perform macro expansion.

Some macro systems resort to AST constructors for macro ex-
pansions instead of templates based on concrete syntax. Maya (Baker
2001) fits the AST-constructor category. Template Haskell (Jones
and Sheard 2002), SugarJ, and the Java Syntax Extender (Bachrach
and Playford 2001) include support for working with concrete syn-

9 2012/4/30

tax, but they also expose a set of abstract syntax tree constructors
for more complex transformations. Caml4p (de Rauglaudre 2007)
is a preprocessor for Ocaml programs that can output concrete
Ocaml syntax, but it cannot output syntax understood by a sepa-
rate preprocessor, so syntax extensions are limited to a single level.
MS2 (Weise and Crew 1993) incorporates Lisp’s quasiquote mech-
anism as a templating system for C, but MS2 does not include
facilities to expand syntax that correspond to infix syntax or any
other complex scheme.

Honu macros have the full power of the language to implement
a macro transformation. Systems that only allow term rewriting,
such as R5RS Scheme (Kelsey et al. 1998), Dylan (Shalit 1998),
and Fortress (Rafkind 2009), can express many simple macros, but
they are cumbersome to use for complex transformations.

ZL (Atkinson et al. 2010) is like Honu in that it relies on
Lisp-like read and parsing phases, it generalizes those to non-
parenthesized syntax, and its macros are expressed with arbitrary
ZL code. Compared to Honu, macros in ZL are more limited in
the forms they can accept, due to decisions made early on in the
read phase. Specifically, arbitrary expressions cannot appears as
subforms unless they are first parenthesized. ZL supports more
flexible extensions by allowing additions to its initial parsing phase,
which is similar to reader extension in Lisp or parsing extensions in
SugarJ, while Honu allows more flexibility within the macro level.

Stratego (Heering et al. 1989) supports macro-like implementa-
tions of languages as separate from the problem of parsing. Systems
built with Stratego can use SDF (Heering et al. 1989) for parsing,
and then separate Stratego transformations process the resulting
AST. Transformations in Stratego are written in a language spe-
cific to the Stratego system and different from the source language
being transformed, unlike Honu or other macro languages.

Many systems implement some form of modularity for syntac-
tic extension. Both SDF and Xoc (Cox et al. 2008) provide a way
to compose modules which define grammar extensions. These sys-
tems have their own set of semantics that are different from the
source language being extended. Honu uses its natural lexical se-
mantics to control the scope of macros. Macros can be imported
into modules and shadowed at any time thus macros do not impose
a fundamental change into reasoning about a program.

Multi-stage allows programs to generate and optimize code at
run-time for specific sets of data. Mython (Riehl 2009), MetaO-
caml (Calcagno et al. 2003), LMS (Rompf and Odersky 2010) are
frameworks that provide methods to optimize expressions by an-
alyzing a representation of the source code. A similar technique
can be achieved in Honu by wrapping expressions with a macro
that analyzes its arguments and plays the role of a compiler by
rewriting the expression to a semantically equivalent expression.
Typed Racket (Culpepper and Tobin-Hochstadt 2010) implements
compile-time optimizations using the Racket macro system.

Acknowledgment: Thanks to Ryan Culpepper and Kevin Atkinson
for feedback on the design and presentation of Honu.

Bibliography
Kevin Atkinson, Matthew Flatt, and Gary Lindstrom. ABI Compatibility

Through a Customizable Language. In Proc. Generative Programming
and Component Engineering, pp. 147–156, 2010.

Jonathan Bachrach and Keith Playford. Java Syntax Extender. In Proc.
Object-Oriented, Programming, Systems, Languages, and Applications,
2001.

Jason Baker. Macros that Play: Migrating from Java to Myans. Masters
dissertation, University of Utah, 2001.

Eli Barzilay, Ryan Culpepper, and Matthew Flatt. Keeping it clean with
syntax parameters. Workshop on Scheme and Functional Programming,
2011.

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Imple-
menting Multi-stage Languages Using ASTs, Gensym, and Reflection.
In Proc. Generative Programming and Component Engineering, 2003.

Russ Cox, Tom Bergan, Austin T. Clements, Frans Kaashoek, and Eddie
Kohler. Xoc, an extension-oriented compiler for systems programming.
In Proc. 13th Conference on Architectural Support for Programming
Languages and Operating Systems, 2008.

Ryan Culpepper and Sam Tobin-Hochstadt. Design and Implementation of
Typed Scheme. Higher Order and Symbolic Computation, 2010.

Daniel de Rauglaudre. Camlp4. 2007. http://brion.inria.fr/
gallium/index.php/Camlp4

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Os-
termann. SugarJ: Library-Based Syntactic Language Extensibility. In
Proc. Object-Oriented, Programming, Systems, Languages, and Appli-
cations, pp. 391–406, 2011.

Matthias Felleisen and Ryan Culpepper. Fortifying Macros. In Proc. ACM
Intl. Conf. Functional Programming, 2010.

Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-Order
Functions. In Proc. ACM Intl. Conf. Functional Programming, pp. 48–
59, 2002.

Matthew Flatt. Compilable and Composable Macros, You Want it When?
In Proc. ACM Intl. Conf. Functional Programming, pp. 72–83, 2002.

Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler.
Macros that Work Together: Compile-Time Bindings, Partial Expan-
sion, and Definition Contexts. Journal of Functional Programming (to
appear), 2012. http://www.cs.utah.edu/plt/expmodel-6/

Robert Grimm. Better extensibility through modular syntax. In Proc. Pro-
gramming Language Design and Implementation pp.38∼51, 2006.

J. Heering, P.R H. Hendricks, P. Klint, and J. Rekers. The syntax definition
formalism sdf reference manual. SIGPLAN Not., 24(11);43-75, 1989.

J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF—reference manual—. SIGPLAN Not. 24(11), pp. 43–
75, 1989.

Simon Peyton Jones and Tim Sheard. Template metaprogramming for
Haskell. In Proc. Haskell Workshop, Pitssburgh, pp1-16, 2002.

Richard Kelsey, William Clinger, and Jonathan Rees (Ed.). R5RS. ACM
SIGPLAN Notices, Vol. 33, No. 9. (1998), pp. 26-76., 1998.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic Macro Expansion. In Proc. Lisp and Functional Pro-
gramming, pp. 151–181, 1986.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot:
An Extensible Compiler Framework for Java. In Proc. 12th Interna-
tional Conference on Compiler Construction. pp. 138-152, 2003.

Vaughan R. Pratt. Top down operator precedence. In Proc. 1st annual
ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, 1973.

Ryan Culpepper, Sukyoung Ryu, Eric Allan, Janus Neilson, Jon Rafkind.
Growing a Syntax. In Proc. FOOL 2009, 2009.

Jonathan Riehl. Language embedding and optimization in mython. In Proc.
DLS 2009. pp.39∼48, 2009.

Tiark Rompf and Martin Odersky. Lightweight Modular Staging: a Prag-
matic Approach to Runtime Code Generation and Compiled DSLs. In
Proc. Generative Programming and Component Engineering, pp. 127–
136, 2010.

Andrew Shalit. Dylan Reference Manual. 1998. http://www.opendylan.
org/books/drm/Title

Michael Sperber (Ed.). Revised6 Report on the Algorithmic Language
Scheme. Cambridge University Press, 2011.

Masaru Tomita. An efficient context-free parsing algorithm for natural
languages. International Joint Conference on Artificial Intelligence. pp.
756–764., 1985.

Alessandro Warth and Ian Piumarta. Ometa: an Object-Oriented Language
for Pattern Matching. In Proc. Dynamic Languages Symposium, 2007.

Daniel Weise and Roger Crew. Programmable syntax macros. In Proc. SIG-
PLAN ’93 Conference on Programming Language Design and Imple-
mentation, 1993.

10 2012/4/30

http://brion.inria.fr/gallium/index.php/Camlp4
http://brion.inria.fr/gallium/index.php/Camlp4
http://www.cs.utah.edu/plt/expmodel-6/
http://www.opendylan.org/books/drm/Title
http://www.opendylan.org/books/drm/Title

	1 Introduction
	2 Honu Overview
	2.1 Honu Syntax
	2.2 Honu Macros
	2.3 Defining Syntax Classes
	2.4 Honu Operators

	3 Parsing Honu
	3.1 Grammar
	3.2 Reading
	3.3 Enforestation
	3.4 Macros and Patterns
	3.5 Parsing
	3.5.1 Parsing Algorithm
	3.5.2 Parsing Example
	3.5.3 Parsing as Expansion

	4 Extended Example
	5 Related Work

