Model Selection and Feature Selection

Piyush Rai

CS5350/6350: Machine Learning

September 22, 2011
What is Model Selection

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. \mathcal{M} may consist of:

- Same learning model with different complexities or hyperparameters
 - Nonlinear Regression: Polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - SVM: Different choices of the misclassification penalty hyperparameter C
 - Regularized Models: Different choices of the regularization parameter
 - Kernel based Methods: Different choices of kernels
 - .. and almost any learning problem
- Different learning models (e.g., SVM, KNN, DT, etc.)

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., “how many clusters” when doing clustering)
Held-out Data

- Set aside a fraction (say 10%-20%) of the training data
- This part becomes our held-out data
 - Other names: validation/development data

\[\text{all the examples} \]
\[
\text{Training Set} \quad \text{Held-out/validation Set}
\]

- **Remember**: Held-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the held-out data
- Choose the model with the smallest held-out error

Problems:
- Wastes training data, so typically used when we have plenty of training data
- Held-out data may not be good if there was an unfortunate split
 - Can ameliorate unfortunate splits by repeated random subsampling
K-fold Cross-Validation

- Create K equal sized partitions of the training data
- Each partition has N/K examples
- Train using $K - 1$ partitions, validate on the remaining partition
- Repeat the same K times, each with a different validation partition

Finally, choose the model with smallest \textit{average} validation error

Usually K is chosen as 10
Leave-One-Out (LOO) Cross-Validation

Special case of K-fold CV when $K = N$ (number of training examples)
- Each partition is now an example
- Train using $N - 1$ examples, validate on the remaining example
- Repeat the same N times, each with a different validation example

Finally, choose the model with smallest **average** validation error
- Can be expensive for large N. Typically used when N is small
Random Subsampling Cross-Validation

- Randomly subsample a fixed fraction αN ($0 < \alpha < 1$) of examples; call it the validation set.
- Train using the rest of the examples, measure error on the validation set.
- Repeat K times, each with a different, randomly chosen validation set.

Finally, choose the model with smallest average validation error.

Usually α is chosen as 0.1, K as 10.
Bootstrapping

- Given: a set of N examples
- Idea: Sample N elements from this set with replacement
 - An already sampled element could be picked again
- Use this new sample as the training data
- Use the set of examples not selected as the validation data
- For large N, training data consists of about only 63% unique examples
- Training data is inherently small \Rightarrow error estimate may be pessimistic
- Use the following equation to compute the expected model error
 \[
e = 0.632 \times e_{\text{test-examples}} + 0.368 \times e_{\text{training-examples}}\]
- Note: the above estimate may still be bad if we overfit and have $e_{\text{training-examples}} = 0$. Why?
Information Criteria based methods

- Akaike Information Criteria (AIC)
 \[AIC = 2k - 2\log(L) \]

- Bayesian Information Criteria (BIC)
 \[BIC = k \log(N) - 2\log(L) \]

- \(k \): # of model parameters
- \(L \): maximum value of the model likelihood function
- Applicable for probabilistic models (when likelihood is defined)
- AIC/BIC penalize model complexity
 - .. as measured by the number of model parameters
 - BIC penalizes the number of parameters more than AIC
- Model with the lowest AIC/BIC will be chosen
- Can be used even for model selection in unsupervised learning
Minimum Description Length (MDL)

- MDL measures the number of bits to encode a probability distribution

\[MDL = -\log_2 P(z) \]

- Minimum Description Length for a model \(M \)

\[\text{Length}(M) = -\log P(Y \mid X, w, M) - \log P(w \mid M) \]

- Note: it’s just the MDL for model’s posterior distribution

\[P(w \mid X, Y, M) \propto P(w \mid M) \times P(Y \mid X, w, M) \]

- Complex posterior distribution \(\Rightarrow \) Complex model
- Choose the model with the lowest MDL
- Note: MDL criteria is kind of equivalent to preferring the best regularized model
Feature Selection

Selecting a useful subset from all the features

Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size

Note: Feature Selection is different from Feature Extraction

- The latter transforms original features to get a small set of new features
- More on feature extraction when we cover Dimensionality Reduction
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it’s ON in very few or most examples
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features

- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features
 - Can be **computationally expensive**
Filter Feature Selection

- Uses heuristics but is much faster than wrapper methods

Correlation Criteria: Rank features in order of their correlation with the labels

\[
R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d)\text{var}(Y)}}
\]

Mutual Information Criteria:

\[
MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{-1,+1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d)P(Y)}
\]

- High mutual information mean high relevance of that feature
- Note: These probabilities can be easily estimated from the data
Wrapper Methods

- Two types: Forward Search and Backward Search
 - **Forward Search**
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
 - **Backward Search**
 - Start with all the features
 - Greedily remove the least relevant feature
 - Stop when selected the desired number of features
 - Inclusion/Removal criteria uses cross-validation
Wrapper Methods

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature f
 - Estimate model’s error on feature set $\mathcal{F} \cup f$ (using cross-validation)
 - Add f with lowest error to \mathcal{F}

Backward Search

- Let $\mathcal{F} = \{\text{all features}\}$
- While not reduced to desired number of features
- For each feature $f \in \mathcal{F}$
 - Estimate model’s error on feature set $\mathcal{F} \setminus f$ (using cross-validation)
 - Remove f with lowest error from \mathcal{F}