A Belief-Based Account of Decision under Uncertainty

Craig R. Fox, Amos Tversky
Outline

• Problem Definition
• Decision under Uncertainty (classical Theory)
• Two-Stage Model
• Probability Judgment and Support Theory
• The Case Studies and Discussion
Decision under Uncertainty

• Judgment of probability

• Decision under Risk
Two studies

• 1995 professional basketball playoffs

• Movement of economic indicators in a simulated economy

• Results
 – Consistent with the belief-based account
 – Violated the partition inequality (implied by classical theory of decision under uncertainty)
Decision Making

• *Decision*: Depends on the strength of people’s *belief* an event happens.

• Question: How to measure these beliefs ?!
Decision under Uncertainty (classical Theory)

• “... derives beliefs about the likelihood of uncertain events from people’s **choices** between prospects whose consequences are contingent on these events.”

• Simultaneous measurement of utility and subjective probability
Challenges

• From psychological perspective:
 1) Belief precedes preference
 2) Probability Judgment
 3) The assumption of the derivation of belief from preference

• Belief based approach uses probability judgment to predict decisions under uncertainty
Background

• Risky prospects – known probabilities
 – Decision under risk
 – Non-linear weighting function
Background

• Real world decisions – uncertain prospects

• Extension to the domain of uncertainty
Cumulative Prospect Theory

- Assumes that an event has more impact on choice when:
 - *Possibility Effect*: It turns an impossibility into a possibility
 - *Certainty Effect*: It turns a possibility into a certainty than when it merely makes a possibility more or less likely.

Bounded Subadditivity
Bounded Subadditivity

• Tested on both risky and uncertain prospects.

• Data satisfied bounded subadditivity for both risk and uncertainty.

• Departure from expected utility theory
Two-Stage Model

- Decision makers:
 1) Assess the probability (P) of an uncertain event (A)
 2) Then, transform this value using the risky weighting function (w)
Two-Stage Model Terminology

• Simple prospect:
 – \((x, A)\): Pay x, if the target event \((A)\) obtains and nothing otherwise.

• Overall value of a prospect \((V)\):
 – \(V(x, A) = v(x)W(A) = v(x)w[P(A)]\)
 - \(P(A)\): judged probability of \(A\)
 - \(v\): value function for monetary gains
 - \(w\): risky weighting function
Probability Judgment

- People’s intuitive probability judgments are often inconsistent with the laws of chance.

- Support Theory: Probabilities are attached to *description of events* (called hypothesis) rather than the *events*.
Support Theory

• Hypothesis, A, has a nonnegative support value, s(A).

• Judged probability P(A, B):
 – Hypothesis A rather than B holds.
 – Interpreted as the support of the focal hypothesis, A, relative to the alternative hypothesis, B.

\[
P(A, B) = \frac{s(A)}{s(A) + s(B)}
\]
Support Theory

- The judged probability of the union of disjoint events is generally smaller than the sum of judged probabilities of these events.

\[s(A) \leq s(A_1 \lor A_2) \leq s(A_1) + s(A_2) \]

Unpacking principle
Support Theory

• Binary Complementarity:
 – $P(A, B) + P(B, A) = 1$

• Subaditivity:
 – For finer partitioning (i.e., more than 2 events), the judged probability is \textit{less than or equal to} the sum of judged probabilities of its disjoint components.

\[
s(A) \leq s(A_1) + s(A_2)
\]
Implications

- Contrast between two-stage modern and expected utility theory with risk aversion:
 - The effect of partitioning
Implications

• Contrast between two-stage modern and expected utility theory with risk aversion:
 – The effect of partitioning
 – The classical model follows *partition inequality*:

\[C(x, A) : \sum_{i=1}^{n} C(x, A_i) \leq C(x, A), \]

• \(C(x, A) \): pays $x if A occurs, and nothing otherwise.
• Doesn’t necessary hold considering the two-stage model.
Two-Stage Model

• Predict the certainty equivalent of an uncertain prospect, $C(x, A)$ from two independent responses:
 – The judged probability of the target event, $P(A)$
 – The certainty equivalent of the risky prospect, $C(x, P(A))$
Study 1

• Four tasks:
 1) Estimating subjects’ certainty equivalents (C) for risky prospects.
 Random draw of a single poker ship from an urn
 2) Estimating subjects’ certainty equivalents (C) for uncertain prospect.
 offering reward if a particular team, division, or conference would win the 1995 NBA.
 3) An independent test of risk aversion
 4) Estimate the probability of target events.
Result of Study 1

• Fit of the models to the data

• Unpacking principle VS. monotonicity
Study 2

• More simulated environment:
 – Subjects have identical information
 – Compare the judged probabilities vs. actual probabilities
Result of Study 2

• Binary partitioning:
 – Judged probabilities (nearly) satisfy binary complementarity
 – Certainty equivalents satisfy the partition inequality

• Finer partitioning:
 – Subadditivity of judged probabilities
 – Reversal of the partition inequality for certainty equivalents
Discussion

• The event spaces under study have some structure (hierarchical, product, ...)
• Subadditivity of judged probability is a major cause of violations of the partition inequality
• Generalization of the two-stage model for source preference.
• Particular description of events on which outcomes depend may affect a person’s willingness to act (unpacking principle)