Dendro-GR: Massively Parallel Simulations of Binary Black Hole Intermediate-Mass-Ratio Inspirals (Tutorial)

Milinda Fernando, Hari Sundar, Hyun Lim, Eric Hirschmann, David Neilsen

Einstein Toolkit Workshop, 2018
Outline

Getting Started

SFC based partitioning

Octree construction & Balancing

Wavelet Adaptive Mesh Refinement (WAMR) & \texttt{FUNCTIONToOCTREE}

Mesh generation

\texttt{NLSM} : Non-linear Sigma Model
 \texttt{NLSM} : Symbolic code generation
 \texttt{NLSM} : Runge-Kutta solver
Installation and getting started

• Downloading DENDRO-GR: You can visit
 https://github.com/paralab/Dendro-GR
 or clone DENDRO-GR
 git clone git@github.com:paralab/Dendro-GR.git
Building DENDRO-GR

CMake options

- **DIM_2(OFF):** Turn ON to run DENDRO-GR with 2D coordinates
Building DENDRO-GR

CMake options

- **DIM_2(OFF)**: Turn ON to run DENDRO-GR with 2D coordinates
- **HILBERT_ORDERING(ON)**: Turn OFF to use Morton curve based partitioning. (By default, DENDRO-GR uses Hilbert curve for SFC based partitioning.)
Building **DENDRO-GR**

CMake options

- **DIM_2(OFF):** Tun ON to run **DENDRO-GR** with 2D coordinates
- **HILBERT_ORDERING(ON):** Turn OFF to use Morton curve based partitioning. (By default, **DENDRO-GR** uses Hilbert curve for SFC based partitioning.)
- **SPLITTER_SELECTION_FIX(ON):** Turn OFF to perform splitter selection in a single stage. (related to SFC based partitioning.)
Building DENDRO-GR

<table>
<thead>
<tr>
<th>CMake options</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM_2(OFF): Turn ON to run DENDRO-GR with 2D coordinates</td>
</tr>
<tr>
<td>HILBERT_ORDERING(ON): Turn OFF to use Morton curve based partitioning. (By default, DENDRO-GR uses Hilbert curve for SFC based partitioning.)</td>
</tr>
<tr>
<td>SPLITTER_SELECTION_FIX(ON): Turn OFF to perform splitter selection in a single stage. (related to SFC based partitioning.)</td>
</tr>
<tr>
<td>NUM_NPES_THRESHOLD(INT): Splitter selection number of stages $\log_2 N / \log_2 NUM_NPES_THRESHOLD$</td>
</tr>
</tbody>
</table>
CMake options

- **DENDRO_VTK_BINARY(ON)**: .PVTU,.VTU files are written in binary encoding.
CMake options

- **DENDRO_VTK_BINARY(ON):** .pvtu,.vtu files are written in binary encoding.
- **DENDRO_VTK_ZLIB_COMPRES (OFF):** if ON .pvtu,.vtu files are compressed while writing them.
Building **DENDRO-GR**

CMake options

- **DENDRO_VTK_BINARY(ON)**: .PVTU,.VTU files are written in binary encoding.
- **DENDRO_VTK_ZLIB_COMPRES (OFF)**: if ON .PVTU,.VTU files are compressed while writing them.
- **RK_SOLVER_OVERLAP_COMM_AND_COMP(ON)**: Overlaps the computation with ghost exchange (communication)
Building **DENDRO-GR**

CMake options

- **DENDRO_VTK_BINARY(ON)**: .PVTU, .VTU files are written in binary encoding.
- **DENDRO_VTK_ZLIB_COMPRES (OFF)**: if ON, .PVTU, .VTU files are compressed while writing them.
- **RK_SOLVER_OVERLAP_COMM_AND_COMP(ON)**: Overlaps the computation with ghost exchange (communication)
Space filling curve based partitioning

Space filling curves

Space Filling Curve (SFC) is a surjective mapping from one dimensional space to multi-dimensional space.

- SFCs can be use to enforce an ordering in multi-dimensional spaces.
- Depending on the SFCs (i.e Hilbert, Morton, Peano etc) the quality (i.e communication cost, energy consumption) of the resulting partitions varies.
- **DENDRO-GR** supports both **HILBERT & MORTON** curves. (use **HILBERT_ORDERING** flag to switch between curves)
Hilbert Vs. Morton

- Compared to Morton curve, Hilbert curve produces better partitions in terms of communication cost.

Figure: Sparsity structure of the communication matrices of Hilbert (left) and Morton (right) based partition schemes for a total mesh size of 1B nodes with 4096 mpi tasks ran on TACC’s Stampede with a tolerance value of 0.3. Note that the two matrices have different sparsity structures and Hilbert is more sparse compared to Morton communication matrix.
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, SFC) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\text{recurse}(\tau_c) \)
8: return

\[T(n) = O(nk) \text{ where } k \leq \log_2(n) \]
TreeSort (pseudo code)

1: $\tau \leftarrow \Gamma$
2: for $p_i \in \tau$ do →
3: $\tau_c \leftarrow \text{bucket}(p_i)$
4: $\text{reorder}(\tau_c, SFC)$
5: for τ_c of τ do
6: if $|\tau_c| > 1$ then
7: $\text{return} \text{recurse}(\tau_c)$
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\rightarrow \text{reorder}(\tau_c, SFC) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\text{recurse}(\tau_c) \)
8: return
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\rightarrow \text{reorder}(\tau_c, SFC) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\text{return} \)
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, SFC) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\rightarrow \text{recurse}(\tau_c) \)
8: return
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do →
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, \text{SFC}) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\text{recurse}(\tau_c) \)
return
TreeSort (pseudo code)

1: $\tau \leftarrow \Gamma$
2: for $p_i \in \tau$ do
3: $\tau_c \leftarrow \text{bucket}(p_i)$
4: $\rightarrow \text{reorder}(\tau_c, SFC)$
5: for τ_c of τ do
6: if $|\tau_c| > 1$ then
7: $\text{return} \text{recurse}(\tau_c)$
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: \(\text{for } p_i \in \tau \text{ do} \)
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, \text{SFC}) \)
5: \(\text{for } \tau_c \text{ of } \tau \text{ do} \)
6: \(\text{if } |\tau_c| > 1 \text{ then} \)
7: \(\rightarrow \text{recurse}(\tau_c) \)
8: \(\text{return} \)
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, \text{SFC}) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\text{recurse}(\tau_c) \)
8: return

// Example output

T(n) = O(nk) where k ≤ \(\log_2(n) \)
TreeSort (pseudo code)

1: $\tau \leftarrow \Gamma$
2: for $p_i \in \tau$ do
3: \hspace{1em} $\tau_c \leftarrow \text{bucket}(p_i)$
4: \hspace{1em} $\rightarrow \text{reorder}(\tau_c, SFC)$
5: for τ_c of τ do
6: \hspace{2em} if $|\tau_c| > 1$ then
7: \hspace{3em} \text{return}\hspace{2em} \text{recurse}(\tau_c)$

$T(n) = \mathcal{O}(nk)$ where $k \leq \log_2(n)$
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: \textbf{for} \(p_i \in \tau \) \textbf{do}
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, SFC) \)
5: \textbf{for} \(\tau_c \) of \(\tau \) \textbf{do}
6: \textbf{if} \(|\tau_c| > 1 \) \textbf{then}
7: \(\text{recurse}(\tau_c) \)
\textbf{return} \rightarrow

\[
T(n) = \mathcal{O}(nk) \text{ where } k \leq \log_2(n)
\]
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, SFC) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\text{recurse}(\tau_c) \)

return

\[
T(n) = \mathcal{O}(nk) \text{ where } k \leq \log_2(n)
\]
TreeSort (pseudo code)

1: \(\tau \leftarrow \Gamma \)
2: for \(p_i \in \tau \) do
3: \(\tau_c \leftarrow \text{bucket}(p_i) \)
4: \(\text{reorder}(\tau_c, SFC) \)
5: for \(\tau_c \) of \(\tau \) do
6: if \(|\tau_c| > 1 \) then
7: \(\text{recurse}(\tau_c) \)
return

\[T(n) = \mathcal{O}(nk) \text{ where } k \leq \log_2(n) \]
TreeSort: Flexible SFC based partitioning

Number of boundary faces between partitions increase when we increase the refinement of the curve when partitioning.

$l=1, \lambda=2, s=16$

$l=2, \lambda=1.2, s=24$

$l=3, \lambda=1.05, s=28$

$l=4, \lambda=1.01, s=30$
Weak scaling results (TreeSort)

Figure: Total execution time for Hilbert & Morton curve based partitioning scheme with, 10^6 grain size (minimum problem size of $80M$ & maximum problem size of $1.3T$ points) in ORNL’s Titan varying number of cores from 16 to 262144.
Strong scaling results (TreeSort)

Figure: Strong scaling results for Hilbert & Morton curve based partitioning scheme with problem size of 16×10^6 points, in ORNL’s Titan varying number of cores from 16 to 1024.
Octree construction & 2:1 balancing

- **Octree construction**: Can be implemented as a variation of TreeSort where we add missing octant when we reached the leaf level of the octree.

- **2:1 balancing**: Can be implemented as 3 passes of TreeSort where adding auxiliary octants for octants which violates the balance constraint.
TreeSort in Dendro-GR

SFC_treeSort can be used for sorting, constructing and balancing octrees by changing the options parameter.

- TS_REMOVE_DUPLICATES: To remove duplicates and perform sorting of octants (use 1 pass over input octants).
TreeSort in Dendro-GR

SFC_treeSort can be used for sorting, constructing and balancing octrees by changing the options parameter.

- **TS_REMOVE_DUPLICATES**: To remove duplicates and perform sorting of octants (use 1 pass over input octants).
- **TS_CONSTRUCT_OCTREE**: To sort and construct the octree (use 1 pass over input octants)
TreeSort in Dendro-GR

SFC_treeSort can be used for sorting, constructing and balancing octrees by changing the options parameter.

- **TS_REMOVE_DUPLICATES**: To remove duplicates and perform sorting of octants (use 1 pass over input octants).
- **TS_CONSTRUCT_OCTREE**: To sort and construct the octree (use 1 pass over input octants).
- **TS_BALANCE_OCTREE**: To remove duplicates and perform sorting of octants and perform construction and balancing. (use 3 pass over input octants)

```cpp
void SFC_treeSort(T* pNodes, DendroIntL n ,std::vector<T>& pOutSorted,std::vector<T>& pOutConstruct,std::vector<T>& pOutBalanced, unsigned int pMaxDepthBit,unsigned int pMaxDepth, T& parent, unsigned int rot_id,unsigned int k, unsigned int options)
```

Fernando, Sundar, Lim, Hirschmann, Neilsen
functionToOctree in Dendro-GR

- Uses the WAMR to determine the refinement pattern.
- Generate initial octree to capture a given function (i.e. specified as std::function)
Example: FUNCTION TO OCTREE

```cpp
// std::function
default_function<double(double,double,double)> g = (const double x, const double y, const double z) {
    return sin(2*M_PI*x)*sin(2*M_PI*y)*sin(2*M_PI*z);
};

// call function to octree
function20ctree(g, tmpNodes, m_uiMaxDepth, wavelet_tol, eOrder, comm);
// remove duplicates and octree construction
SFC::parSort::SFC_treeSort(tmpNodes, balOctree, balOctree, balOctree, partition_tol, m_uiMaxDepth, rootNode, ROOT_ROTATION, 1, TS_CONSTRUCT_OCTREE, 2, comm);
std::swap(tmpNodes, balOctree);
balOctree.clear();
// octree 2:1 balancing
SFC::parSort::SFC_treeSort(tmpNodes, balOctree, balOctree, balOctree, balOctree, partition_tol, m_uiMaxDepth, rootNode, ROOT_ROTATION, 1, TS_BALANCE_OCTREE, 2, comm);
tmpNodes.clear();
```
Example: \textbf{FUNCTIONToOctree}

\[f(x), x \in \Omega \]

\[T_c \in \Omega \]

\[T_b \in \Omega \]
Mesh generation

- Build neighborhood data structures on the adaptive octree to perform numerical computations.
Mesh generation

- Build neighborhood data structures on the adaptive octree to perform numerical computations.
- Assumes that the input octree is 2:1 balanced.
Mesh generation

- Build neighborhood data structures on the adaptive octree to perform numerical computations.
- Assumes that the input octree is 2 : 1 balanced.
- Includes utility functionalities (zip/unzip, ghost nodal exchange) to write numerical methods such as finite difference or finite element computations.
Mesh generation

• Build neighborhood data structures on the adaptive octree to perform numerical computations.
• Assumes that the input octree is 2 : 1 balanced.
• Includes utility functionalities (zip/unzip, ghost nodal exchange) to write numerical methods such as finite difference or finite element computations.
• Communicator expansion/shrinking: Ability to dynamically change the number of cores used (depending on the problem size)
Mesh generation

• Build neighborhood data structures on the adaptive octree to perform numerical computations.
• Assumes that the input octree is 2:1 balanced.
• Includes utility functionalities (zip/unzip, ghost nodal exchange) to write numerical methods such as finite difference or finite element computations.
• Communicator expansion/shrinking : Ability to dynamically change the number of cores used (depending on the problem size)
• Re-mesh (with dynamic load balancing) and inter-grid transfer operations.
Mesh::Mesh(std::vector<ot::TreeNode> &in, unsigned int k_s=1, unsigned int pOrder=4, MPI_Comm comm, unsigned int grainSz, double ld_tol, unsigned int sf_k=2)
Zip & Unzip
Overview of RK solver

$u_0 \rightarrow u_n \rightarrow u_{n+1}$

RK stages

initial u_0 unzip blocks unzip zip u_{n+1}

blocks
Example: Solving NLSM using DENDRO-GR

Let $\chi(x, t)$ scalar function defined on $\Omega = [a, b]^3 \subset \mathbb{R}^3$

$$\chi_{tt} = \Delta \chi - \frac{\sin(2\chi)}{\|r\|_2^2}$$

(1)

Let’s rewrite above as,

$$\phi_t = \Delta \chi - \frac{\sin(2\chi)}{\|r\|_2^2}$$

$$\chi_t = \phi$$

with outgoing (open) boundary conditions,

$$\chi_t = -\chi_t^t \nabla \chi - k(\chi - \chi_0)$$

$$\|r\|_2$$

Ref: Liebling(2004), The nonlinear sigma model with Distributed adaptive mesh refinement
import dendro
from sympy import *

initialize
r = symbols('r')

declare functions
chi = dendro.scalar("chi","[pp]")
phi = dendro.scalar("phi","[pp]")
d = dendro.set_first_derivative('grad') # first argument is direction
d2s = dendro.set_second_derivative('grad2') # first 2 arguments are directions
d2 = dendro.d2

evolution equations
phi_rhs = sum(d2(i,i,chi) for i in dendro.e_i) - sin(2*chi)/r**2
chi_rhs = phi

outs = [phi_rhs, chi_rhs]
vnames = ['phi_rhs', 'chi_rhs']
dendro.generate(outs, vnames, '[pp]')
// Dendro: {{{
// Dendro: original ops: 10
// Dendro: printing temp variables

// Dendro: printing variables
//--
phi_rhs[pp] = grad2_0_0_chi[pp] + grad2_1_1_chi[pp] + grad2_2_2_chi[pp]
 - sin(2*chi[pp])/pow(r, 2);
//--
chi_rhs[pp] = phi[pp];
// Dendro: reduced ops: 10
// Dendro: }}}}
NLSM: Generated code C code

// Dendro: {{{
// Dendro: original ops: 10
// Dendro: printing temp variables

// Dendro: printing variables
//--
phi_rhs[pp] = grad2_0_0_ch[i][pp] + grad2_1_1_ch[i][pp] + grad2_2_2_ch[i][pp]
 - sin(2*chi[pp])/pow(r, 2);
//--
chi_rhs[pp] = phi[pp];
// Dendro: reduced ops: 10
// Dendro: }}}

• Note that in BSSN code generation original number of operations 667,747 reduced to 4484 by common sub-expression elimination.
Runge-Kutta Solver

1: \(M \leftarrow \text{initialize mesh} \)
2: \(u = (\phi, \chi) \leftarrow \text{initialize variables (} M \text{)} \)
3: while \(t < T \) do
 4: for \(r = 1 : 4 \) do
 5: \(B, \hat{u} \leftarrow \text{Unzip}_\text{async}(M, u) \)
 6: for \(b \in B \) do
 7: Compute derivatives
 8: Compute \(\hat{u}_{rhs}(b) \)
 9: \(u_{rhs} \leftarrow \text{Zip}(M, B, \hat{u}_{rhs}) \)
 10: RK update
 11: \(t \leftarrow t + dt \)
 12: if need remesh \(M \) then
 13: \(M' \leftarrow \text{remesh}(M) \)
 14: \(u' \leftarrow \text{Intergrid}_\text{Transfer}(M, M', u) \)

▷ Machine generated code
▷ Machine generated code
▷ based on WAMR
Runge-Kutta Solver

1: $M \leftarrow$ initialize mesh
2: $u = (\phi, \chi) \leftarrow$ initialize variables (M)
3: while $t < T$ do
4: for $r = 1 : 4$ do
5: $B, \hat{u} \leftarrow \text{Unzip}_\text{async}(M, u)$
6: for $b \in B$ do
7: Compute derivatives
8: Compute $\hat{u}_{r\text{hs}}(b)$
9: $u_{r\text{hs}} \leftarrow \text{Zip}(M, B, \hat{u}_{r\text{hs}})$
10: RK update
11: $t \leftarrow t + dt$
12: if need remesh M then
13: $M' \leftarrow \text{remesh}(M)$
14: $u' \leftarrow \text{Intergid}_\text{Transfer}(M, M', u)$
Runge-Kutta Solver

1: \[M \leftarrow \text{initialize mesh} \]
2: \[u = (\phi, \chi) \leftarrow \text{initialize variables} \ (M) \]
3: \[\textbf{while} \ t < T \ \textbf{do} \]
4: \[\textbf{for} \ r = 1 : 4 \ \textbf{do} \]
5: \[B, \hat{u} \leftarrow \text{Unzip_async}(M, u) \]
6: \[\textbf{for} \ b \in B \ \textbf{do} \]
7: \[\text{Compute derivatives} \]
8: \[\text{Compute } \hat{u}_{\text{rhs}}(b) \]
9: \[u_{\text{rhs}} \leftarrow \text{Zip}(M, B, \hat{u}_{\text{rhs}}) \]
10: \[\text{RK update} \]
11: \[t \leftarrow t + dt \]
12: \[\textbf{if} \ \text{need remesh} \ M \ \textbf{then} \]
13: \[M' \leftarrow \text{remesh}(M) \]
14: \[u' \leftarrow \text{Intergid_Transfer}(M, M', u) \]

- Machine generated code
- Machine generated code
- Based on WAMR
Runge-Kutta Solver

1: $M \leftarrow$ initialize mesh
2: $u = (\phi, \chi) \leftarrow$ initialize variables (M)
3: while $t < T$ do →
4: for $r = 1 : 4$ do
5: $B, \hat{u} \leftarrow$ Unzip_async(M, u)
6: for $b \in B$ do
7: Compute derivatives
8: Compute $\hat{u}_{rhs}(b)$
9: $u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})
10: RK update
11: $t \leftarrow t + dt$
12: if need remesh M then → based on WAMR
13: $M' \leftarrow$ remesh(M)
14: $u' \leftarrow$ Intergrid_Transfer(M, M', u)
Runge-Kutta Solver

1. $M \leftarrow$ initialize mesh
2. $u = (\phi, \chi) \leftarrow$ initialize variables (M)
3. while $t < T$ do
4.
5.
6.
7.
8.
9.
10.
11. if need remesh M then
12.
13.
14.

Machine generated code

$B, \hat{u} \leftarrow$ Unzip$_{async}(M, u)$

$\hat{u}_{rhs}(b)$

$u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})

$\rightarrow B, \hat{u} \leftarrow$ Unzip$_{async}(M, u)$

$\hat{u}_{rhs}(b)$

$u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})

$\hat{u}_{rhs}(b)$

$u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})

$\rightarrow B, \hat{u} \leftarrow$ Unzip$_{async}(M, u)$

$\hat{u}_{rhs}(b)$

$u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})

$\rightarrow B, \hat{u} \leftarrow$ Unzip$_{async}(M, u)$

$\hat{u}_{rhs}(b)$

$u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})

$\rightarrow B, \hat{u} \leftarrow$ Unzip$_{async}(M, u)$

$\hat{u}_{rhs}(b)$

$u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})

$\rightarrow B, \hat{u} \leftarrow$ Unzip$_{async}(M, u)$

$\hat{u}_{rhs}(b)$

$u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})
Runge-Kutta Solver

1: \[M \leftarrow \text{initialize mesh} \]
2: \[u = (\phi, \chi) \leftarrow \text{initialize variables (} M \text{)} \]
3: \[\text{while } t < T \text{ do} \]
4: \[\text{for } r = 1 : 4 \text{ do} \]
5: \[B, \hat{u} \leftarrow \text{Unzip}_\text{async}(M, u) \rightarrow \]
6: \[\text{for } b \in B \text{ do} \]
7: \[\text{Compute derivatives} \]
8: \[\text{Compute } \hat{u}_{\text{rhs}}(b) \]
9: \[u_{\text{rhs}} \leftarrow \text{Zip}(M, B, \hat{u}_{\text{rhs}}) \]
10: \[\text{RK update} \]
11: \[t \leftarrow t + dt \]
12: \[\text{if need remesh } M \text{ then} \] \[\text{based on WAMR} \]
13: \[M' \leftarrow \text{remesh}(M) \]
14: \[u' \leftarrow \text{Intergid_Transfer}(M, M', u) \]
Runge-Kutta Solver

1: $M \leftarrow \text{initialize mesh}$
2: $u = (\phi, \chi) \leftarrow \text{initialize variables (} M \text{)}$
3: while $t < T$ do
4: for $r = 1 : 4$ do
5: $\hat{M}, \hat{u} \leftarrow \text{Unzip_async}(M, u)$
6: for $b \in \hat{M}$ do
7: Compute derivatives ▶ Machine generated code
8: Compute $\hat{u}_{rhs}(b)$ ▶ Machine generated code
9: $u_{rhs} \leftarrow \text{Zip}(M, B, \hat{u}_{rhs})$
10: RK update
11: $t \leftarrow t + dt$
12: if need remesh M then ▶ based on WAMR
13: $M' \leftarrow \text{remesh}(M)$
14: $u' \leftarrow \text{Intergid_Transfer}(M, M', u)$
Runge-Kutta Solver

1: \[M \leftarrow \text{initialize mesh} \]
2: \[u = (\phi, \chi) \leftarrow \text{initialize variables} \ (M) \]
3: \[\textbf{while } t < T \textbf{ do} \]
4: \[\textbf{for } r = 1 : 4 \textbf{ do} \]
5: \[B, \hat{u} \leftarrow \text{Unzip_async}(M, u) \]
6: \[\textbf{for } b \in B \textbf{ do} \]
7: \[\text{Compute derivatives} \]
8: \[\rightarrow \text{Compute } \hat{u}_{rhs}(b) \]
9: \[u_{rhs} \leftarrow \text{Zip}(M, B, \hat{u}_{rhs}) \]
10: \[\text{RK update} \]
11: \[t \leftarrow t + dt \]
12: \[\textbf{if need remesh } M \textbf{ then} \]
13: \[M' \leftarrow \text{remesh}(M) \]
14: \[u' \leftarrow \text{Intergid_Transfer}(M, M', u) \]
Runge-Kutta Solver

1: $M \leftarrow$ initialize mesh
2: $u = (\phi, \chi) \leftarrow$ initialize variables (M)
3: while $t < T$ do
4: for $r = 1 : 4$ do
5: $B, \hat{u} \leftarrow$ Unzip_async(M, u)
6: for $b \in B$ do
7: Compute derivatives
8: Compute $\hat{u}_{\text{rhs}}(b)$ \hspace{1cm} \triangleright \text{Machine generated code}
9: $u_{\text{rhs}} \leftarrow$ Zip($M, B, \hat{u}_{\text{rhs}}$)
10: RK update
11: $t \leftarrow t + dt$
12: if need remesh M then \hspace{1cm} \triangleright \text{based on WAMR}
13: $M' \leftarrow$ remesh(M)
14: $u' \leftarrow$ Intergid_Transfer(M, M', u)
Runge-Kutta Solver

1: $M \leftarrow$ initialize mesh
2: $u = (\phi, \chi) \leftarrow$ initialize variables (M)
3: while $t < T$ do
4: for $r = 1 : 4$ do
5: $B, \hat{u} \leftarrow \text{Unzip}_\text{async}(M, u)$
6: for $b \in B$ do
7: Compute derivatives
8: Compute $\hat{u}_{rhs}(b)$
9: $u_{rhs} \leftarrow \text{Zip}(M, B, \hat{u}_{rhs})$
10: \rightarrow RK update
11: $t \leftarrow t + dt$
12: if need remesh M then
13: $M' \leftarrow \text{remesh}(M)$
14: $u' \leftarrow \text{Intergid_Transfer}(M, M', u)$

Machine generated code

\rightarrow based on WAMR
Runge-Kutta Solver

1. $M \leftarrow$ initialize mesh
2. $u = (\phi, \chi) \leftarrow$ initialize variables (M)
3. while $t < T$ do
4. for $r = 1 : 4$ do
5. $B, \hat{u} \leftarrow$ Unzip_async(M, u)
6. for $b \in B$ do
7. Compute derivatives
8. Compute $\hat{u}_{rhs}(b)$
9. $u_{rhs} \leftarrow$ Zip(M, B, \hat{u}_{rhs})
10. RK update
11. $t \leftarrow t + dt$
12. if need remesh M then
13. $M' \leftarrow$ remesh(M)
14. $u' \leftarrow$ Intergid_Transfer(M, M', u)

\triangleright Machine generated code
\triangleright Machine generated code
\triangleright based on WAMR
Runge-Kutta Solver

1: \(M \leftarrow \text{initialize mesh} \)

2: \(u = (\phi, \chi) \leftarrow \text{initialize variables (} M) \)

3: while \(t < T \) do

4: for \(r = 1 : 4 \) do

5: \(B, \hat{u} \leftarrow \text{Unzip_async}(M, u) \)

6: for \(b \in B \) do

7: Compute derivatives \(\triangleq \text{Machine generated code} \)

8: Compute \(\hat{u}_{rhs}(b) \) \(\triangleq \text{Machine generated code} \)

9: \(u_{rhs} \leftarrow \text{Zip}(M, B, \hat{u}_{rhs}) \)

10: RK update

11: \(t \leftarrow t + dt \) \(\rightarrow \)

12: if need remesh \(M \) then \(\triangleright \text{based on WAMR} \)

13: \(M' \leftarrow \text{remesh}(M) \)

14: \(u' \leftarrow \text{Intergid_Transfer}(M, M', u) \)
Runge-Kutta Solver

1: $M \leftarrow \text{initialize mesh}$
2: $u = (\phi, \chi) \leftarrow \text{initialize variables (} M \text{)}$
3: while $t < T$ do
4: for $r = 1 : 4$ do
5: $B, \hat{u} \leftarrow \text{Unzip_async}(M, u)$
6: for $b \in B$ do
7: Compute derivatives \triangledown
8: Compute $\hat{u}_{\text{rhs}}(b)$ \triangledown
9: $u_{\text{rhs}} \leftarrow \text{Zip}(M, B, \hat{u}_{\text{rhs}})$
10: RK update
11: $t \leftarrow t + dt$
12: if need remesh M then \triangledown
13: $M' \leftarrow \text{remesh}(M)$ \triangledown
14: $u' \leftarrow \text{Intergid_Transfer}(M, M', u)$
Runge-Kutta Solver

1. \(M \leftarrow \text{initialize mesh} \)
2. \(u = (\phi, \chi) \leftarrow \text{initialize variables} (M) \)
3. \[\text{while } t < T \text{ do} \]
4. \[\quad \text{for } r = 1 : 4 \text{ do} \]
5. \[\quad B, \hat{u} \leftarrow \text{Unzip}_\text{async}(M, u) \]
6. \[\quad \text{for } b \in B \text{ do} \]
7. \[\quad \text{Compute derivatives} \] \>
8. \[\quad \text{Compute } \hat{u}_{\text{rhs}}(b) \] \>
9. \[u_{\text{rhs}} \leftarrow \text{Zip}(M, B, \hat{u}_{\text{rhs}}) \]
10. \[\text{RK update} \]
11. \[t \leftarrow t + dt \]
12. \[\text{if need remesh } M \text{ then} \] \>
13. \[M' \leftarrow \text{remesh}(M) \] \>
14. \[\rightarrow u' \leftarrow \text{Intergid}_\text{Transfer}(M, M', u) \] \>

\(\triangleright \) Machine generated code

\(\triangleright \) Machine generated code

\(\triangleright \) based on WAMR
// initial octree
function2Octree(f_init,nlsm::NLSM_NUM_VARS,varIndex,interpVars,tmpNodes,m_uiMaxDepth,nlsm::NLSM_WAVELET_TOL,nlsm::NLSM_ELE_ORDER,comm);

// 2:1 balancing of octrees.
SFC::parSort::SFC_treeSort(tmpNodes,balOct,balOct,balOct,nlsm::NLSM_LOAD_IMB_TOL,m_uiMaxDepth,
root,ROOT_ROTATION,1,TS_BALANCE_OCTREE,nlsm::NLSM_SPLIT_FIX,commActive);

// Mesh generation
ot::Mesh * mesh=new
ot::Mesh(balOct,1,nlsm::NLSM_ELE_ORDER,comm,nlsm::NLSM_DENDRO_GRAIN_SZ,nlsm::NLSM_LOAD_IMB_TOL,nlsm::NLSM_SPLIT_FIX);

// Initialize the rk solver.
ode::solver::RK4_NLSM
rk_nlsm(mesh,nlsm::NLSM_RK45_TIME_BEGIN,nlsm::NLSM_RK45_TIME_END,nlsm::NLSM_RK45_TIME_STEP_SIZE);

// solve.
rk_nlsm.rkSolve();
Linear wave equation
Non-linear sigma model (single Gaussian distribution)
Non-linear sigma model (two Gaussian distributions)
Questions ?
Thank You.