L3: Writing Correct Programs

Administrative

- First assignment out, due Friday at 5PM (extended)
 - Use handin on CADE machines to submit
 - "handin cs6963 lab1 <probfile>
 - The file <probfile> should be a gzipped tar file of the CUDA program and output
 - Any questions?
- Mailing lists now visible:
 - cs6963s10-discussion@list.eng.utah.edu
 - Please use for all questions suitable for the whole class
 - Feel free to answer your classmates questions!
 - cs6963s10-teach@list.eng.utah.edu
 - Please use for questions to Protonu and me

Outline

- How to tell if your parallelization is correct?
 - Definitions:
 - Race conditions and data dependences
 - Example
 - Reasoning about race conditions
 - A Look at the Architecture:
 - Race conditions
 - Synchronization within a block __syncthreads();
 - Synchronization across blocks (through global memory)
 - atomicOperations (example)
 - memoryFences
 - A Few Words about Debugging

What can we do to determine if parallelization is correct in CUDA?

- deviceemu code (to be emulated on host)
 - Support for pthread debugging?
- Can compare GPU output to CPU output, or compare GPU output to device emulation output
 - Race condition may still be present

We'll come back to both of these at the end.

- Or can (try to) prevent introduction of race conditions (bulk of lecture)
Reductions (from last time)

• “Count 6s” example
• This type of computation is called a parallel reduction
 – Operation is applied to large data structure
 – Computed result represents the aggregate solution across the large data structure
 – Large data structure \(\rightarrow \) computed result (perhaps single number) [dimensionality reduced]
• Why might parallel reductions be well-suited to GPUs?
• What if we tried to compute the final sum on the GPUs? (next class and assignment)

What if we computed sum on GPU?

• Global, device functions and excerpts from host, main

```
__global__ void compute(int *d_in, int *d_sum)
{
    *d_sum = 0;
    for (i=0; i<SIZE/BLOCKSIZE; i++)
    {
        int val = d_in[threadIdx.x];
        *d_sum += compare(val, 6);
    }
}
```

```
__device__
int compare(int a, int b)
{
    if (a == b)
    return 1;
    return 0;
}
```

```
int __host__ void outer_compute(int *h_in_array, int *h_out_array)
{
    compute<<<1,BLOCKSIZE,msize>>>(d_in_array, d_sum);
    cudaMemcpy(d_out_array, d_sum, BLOCKSIZE*sizeof(int), cudaMemcpyDeviceToHost);
}
```

```
main(int argc, char **argv)
{
    int *sum;

    // an integer
    outer_compute(in_array, sum);
    printf("Result = %d",sum);
}
```

“Data Race” on sum

```
threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15
```

Known as a cyclic data distribution
Threads Access the Same Memory!

• Global memory and shared memory within an SM can be freely accessed by multiple threads
• Requires appropriate sequencing of memory accesses across threads to same location if at least one access is a write

More Formally:
Race Condition or Data Dependence

• A race condition exists when the result of an execution depends on the timing of two or more events.
• A data dependence is an ordering on a pair of memory operations that must be preserved to maintain correctness.

Data Dependence

• Definition:
 Two memory accesses are involved in a data dependence if they may refer to the same memory location and one of the references is a write.

 A data dependence can either be between two distinct program statements or two different dynamic executions of the same program statement.
• Two important uses of data dependence information (among others):
 Parallelization: no data dependence between two computations \(\Rightarrow \) parallel execution safe
 Locality optimization: absence of data dependences & presence of reuse \(\Rightarrow \) reorder memory accesses for better data locality (next week)

Data Dependence of Scalar Variables

True (flow) dependence
\(\frac{a}{a} \)

Anti-dependence
\(\frac{a}{a} \)

Output dependence
\(\frac{a}{a} \)

Input dependence (for locality)
\(\frac{a}{a} \)

Definition: Data dependence exists from a reference instance \(i \) to \(i' \) iff either \(i \) or \(i' \) is a write operation
\(i \) and \(i' \) refer to the same variable
\(i \) executes before \(i' \)
Some Definitions (from Allen & Kennedy)

• Definition 2.5:
 – Two computations are equivalent if, on the same inputs,
 • they produce identical outputs
 • the outputs are executed in the same order

• Definition 2.6:
 – A reordering transformation
 • changes the order of statement execution
 • without adding or deleting any statement executions.

• Definition 2.7:
 – A reordering transformation preserves a dependence if
 • it preserves the relative execution order of the dependences’ source and sink.

Fundamental Theorem of Dependence

• Theorem 2.2:
 – Any reordering transformation that preserves every dependence in a program preserves the meaning of that program.

Now we will discuss abstractions and algorithms to determine whether reordering transformations preserve dependences...

Parallelization as a Reordering Transformation in CUDA

```c
__host callkernel() {
   dim3 blocks(bx,by);
   dim3 threads(tx,ty,tz);
   ...
   kernelcode<<<blocks,threads>>>(<args>);
}

__global kernelcode(<args>) {
   /* code refers to threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x, blockIdx.y */
}
```

Consider Parallelizable Loops

For all (or CUDA kernels or Doall) loops:
Loops whose iterations can execute in parallel (a particular reordering transformation)

Example

```c
defall (i=1; i<n; i++)
   A[i] = B[i] + C[i];
```

Meaning?
Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept for data-parallel programming models?
CUDA Equivalent to “Forall”

```c
__host callkernel() {
    forall (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {
        forall (int bIdx_y=0; bIdx_y<by; bIdx_y++) {
            forall (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {
                forall (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {
                    forall (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {
                        /* code refers to tIdx_x, tIdx_y, tIdx_z, bIdx_x, bIdx_y */
                    }
                }
            }
        }
    }
}
```

Using Data Dependences to Reason about Race Conditions

- Compiler research on data dependence analysis provides a systematic way to conservatively identify race conditions on scalar and array variables
 - "Forall" if no dependences cross the iteration boundary of a parallel loop. (no loop-carried dependences)
 - If a race condition is found, either serialize loop(s) carrying dependence, or add "synchronization"

Back to our Example: What if Threads Need to Access Same Memory Location

- Dependence on sum across iterations/threads
 - But reordering ok since operations on sum are associative
- Load/increment/store must be done atomically to preserve sequential meaning
- Add Synchronization
 - Protect memory locations
 - Control-based (what are threads doing?)
- Definitions:
 - **Atomicity**: a set of operations is atomic if either they all execute or none executes. Thus, there is no way to see the results of a partial execution.
 - **Mutual exclusion**: at most one thread can execute the code at any time
 - **Barrier**: forces threads to stop and wait until all threads have arrived at some point in code, and typically at the same point

A Look at the Architecture

- What makes it convenient in hardware to efficiently synchronize within blocks?
- And not between blocks?
- Consider device consists of replicated streaming multiprocessors
- And shared instruction unit in SIMD architecture of streaming multiprocessor
Gathering Results on GPU:
Barrier Synchronization w/in Block

void __syncthreads();

- **Functionality:** Synchronizes all threads in a block
 - Each thread waits at the point of this call until all other threads have reached it
 - Once all threads have reached this point, execution resumes normally
- **Why is this needed?**
 - A thread can freely read the shared memory of its thread block or the global memory of either its block or grid.
 - Allows the program to guarantee partial ordering of these accessed to prevent incorrect orderings.
- **Watch out!**
 - Potential for deadlock when it appears in conditionals

```c
__global__
void compute(int *d_in, int *d_out)
{
    d_out[threadIdx.x] = 0;
    for (i = 0; i < SIZE/BLOCKSIZE; i++)
    {
        int val = d_in[i*BLOCKSIZE + threadIdx.x];
        d_out[threadIdx.x] += compare(val, 6);
    }
    __syncthreads();
    if (threadIdx.x == 0)
    {
        for (0..BLOCKSIZE-1)
        {
            d_sum += d_out[i];
        }
    }
}
```

Gathering Results on GPU for “Count 6”

```c
__global__
void compute(int *d_in, int *d_out, int *d_sum)
{
    d_out[threadIdx.x] = 0;
    for (i = 0; i < SIZE/BLOCKSIZE; i++)
    {
        int val = d_in[i*BLOCKSIZE + threadIdx.x];
        d_out[threadIdx.x] += compare(val, 6);
    }
    __syncthreads();
    if (threadIdx.x == 0)
    {
        for (0..BLOCKSIZE-1)
        {
            d_sum += d_out[i];
        }
    }
}
```

Gathering Results on GPU:
Atomic Update to Sum Variable

```c
int atomicAdd(int * address, int val);
```

Increments the integer at address by val.

Atomic means that once initiated, the operation executes to completion without interruption by other threads

```c
atomicAdd(d_sum,
    d_out_array[threadIdx.x]);
```
Available Atomic Functions

All but CAS take two operands (unsigned int *address, int (or other type) val):

Arithmetic:
- atomicAdd() – add val to address
- atomicSub() – subtract val from address
- atomicExch() – exchange val at address, return old value
- atomicMin()
- atomicMax()
- atomicInc()
- atomicDec()
- atomicCAS()

Bitwise Functions:
- atomicAnd()
- atomicOr()
- atomicXor()

See Appendix B10 of NVIDIA CUDA Programming Guide

Synchronization Within/Across Blocks:
Memory Fence Instructions

void __threadfence_block();
- waits until all global and shared memory accesses made by the calling thread prior to __threadfence_block() are visible to all threads in the thread block. In general, when a thread issues a series of writes to memory in a particular order, other threads may see the effects of these memory writes in a different order.

void __threadfence();
- waits until all global and shared memory accesses made by the calling thread prior to __threadfence() are visible to all threads in the device for global memory accesses and all threads in the thread block for shared memory accesses.

Memory Fence Example

__device__ unsigned int count = 0;
__shared__ bool isLastBlockDone;
__global__ void sum(const float* array, unsigned int N, float* result)
{
// Each block sums a subset of the input array
float paralSum = calculateParallelSum(array, N);
if (threadIdx.x == 0)
{
// Thread 0 of each block stores the partial sum
// to global memory
result[blockIdx.x] = paralSum;
// Thread 0 makes sure its result is visible to
// all other threads
__threadfence();
// Thread 0 of each block signals that it is done
// and last block determines if its block is
// the last block to be done
isLastBlockDone = (value == (gridDim.x - 1));
}
// Synchronize to make sure that each thread
// reads the correct value of isLastBlockDone
__syncthreads();
if (isLastBlockDone)
{
// The last block sums the partial
// sums stored in result
float totalSum = calculateTotalSum(result);
if (threadIdx.x == 0)
{
// Thread 0 of last block stores total sum
// to global memory and resets count so that
// next kernel call works properly
result[0] = totalSum;
count = 0;
}
}

Debugging: Using Device Emulation Mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of __syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
Debugging: Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads could produce different results.
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode.
- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs, instruction sets
 - Use of extended precision for intermediate results
 - There are various options to force strict single precision on the host

Debugging: Run-time functions & macros for error checking

In CUDA run-time services:
```
cudaGetDeviceProperties(&deviceProp, d);
```
check number, type and whether device present

In libcutil.a of Software Developers’ Kit:
```
cutComparef(float *ref, float *data, unsigned len);
```
compare output with reference from CPU implementation

In cutil.h of Software Developers’ Kit (with #define _DEBUG or –D_DEBUG compile flag):
```
CUDA_SAFE_CALL(f(<args>)),
CUT_SAFE_CALL(f(<args>));
```
check for error in run-time call and exit if error detected
```
CUDA_SAFE_MALLOC(cudaMalloc(<args>));
```
similar to above, but for malloc calls
```
CUT_CHK_ERROR("error message goes here");
```
check for error immediately following kernel execution and if detected, exit with error message

Summary of Lecture

- Data dependence can be used to determine the safety of reordering transformations such as parallelization
- preserving dependences = preserving “meaning”
- In the presence of dependences, synchronization is needed to guarantee safe access to memory
- Synchronization mechanisms on GPUs:
 - __syncthreads() barrier within a block
 - Atomic functions on locations in memory across blocks
 - Memory fences within and across blocks
- Debugging your code:
 - Execute single-threaded in device emulation mode on host
 - Compare results to “gold” version implemented on host
 - Other run-time libraries to detect failures
 - More next week on feedback from the compiler

Next Week

- Managing the memory hierarchy
 - Structure of memory system
 - Restrictions on use of different memories
- Data locality to reduce memory latency
- Bandwidth optimizations to reduce memory traffic
- Assignment 2