L7: Memory Hierarchy Optimization, cont.

Administrative

• Homework #2, posted on website
 – Due 5PM, Thursday, February 19
 – Use handin program to submit
• Project proposals
 – Due 5PM, Friday, March 13 (hard deadline)
 – Discuss today

Outline

• Homework discussion
• Project discussion
• Complete tiling discussion and matrix multiply example
• Calculating data reuse and data footprint

Project Proposal

• Project Logistics:
 – 2-3 person teams
 – Significant implementation, worth 55% of grade
 – Parts: proposal, design review (3/30 and 4/1), final presentation and report (end of semester)
 – Each person turns in the proposal (should be same as other team members)
• Proposal:
 – 3-4 page document (11pt, single-spaced)
 – Submit with handin program:
 “handin cs6963 prop <pdf-file>“
Content of Proposal

I. Team members: Name and a sentence on expertise for each member

II. Problem description
 - What is the computation and why is it important?
 - Abstraction of computation: equations, graphic or pseudo-code, no more than 1 page

III. Suitability for GPU acceleration
 - Amdahl's Law: describe the inherent parallelism. Argue that it is close to 100% of computation. Use measurements from CPU execution of computation if possible.
 - Synchronization and Communication: Discuss what data structures may need to be protected by synchronization, or communication through host.
 - Copy Overhead: Discuss the data footprint and anticipated cost of copying to/from host memory.

IV. Intellectual Challenges
 - Generally, what makes this computation worthy of a project?
 - Point to any difficulties you anticipate at present in achieving high speedup.

Capacity Questions

- How much shared memory, global memory, registers, constant memory, constant cache, etc.?
 - deviceQuery function (in SDK) instantiates variable of type cudaDeviceProp with this information and prints it out.
- Summary for 9400 M (last homework problem)
 - 8192 registers per SM
 - 16KB shared memory per SM
 - 64KB constant memory
 - stored in global memory
 - presumably, 8KB constant cache
 - 256MB global memory

Main points from Previous Lecture

- Considered latencies of different levels of memory hierarchy
 - Global memory latency roughly hundreds of cycles
 - Registers, shared memory and constant cache roughly single cycle latency
 - Constant memory (stored in global memory) can be used for read-only data, but only a win if it is cached
- Examples showing how to place data in constant or shared memory
- Tiling transformation for managing limited capacity storage (shared memory, constant cache, global memory, even registers)

Targets of Memory Hierarchy Optimizations

- Reduce memory latency
 - The latency of a memory access is the time (usually in cycles) between a memory request and its completion
- Maximize memory bandwidth
 - Bandwidth is the amount of useful data that can be retrieved over a time interval
- Manage overhead
 - Cost of performing optimization (e.g., copying) should be less than anticipated gain
Optimizing the Memory Hierarchy on GPUs

- Device memory access times non-uniform so data placement significantly affects performance.
- But controlling data placement may require additional copying, so consider overhead.
- Optimizations to increase memory bandwidth. Idea: maximize utility of each memory access.
 - Align data structures to address boundaries
 - Coalesce global memory accesses
 - Avoid memory bank conflicts to increase memory access parallelism

Reuse and Locality

- Consider how data is accessed
 - Data reuse:
 - Same data used multiple times
 - Intrinsic in computation
 - Data locality:
 - Data is reused and is present in "fast memory"
 - Same data or same data transfer
- If a computation has reuse, what can we do to get locality?
 - Appropriate data placement and layout
 - Code reordering transformations

Now Let's Look at Shared Memory

- Common Programming Pattern (5.1.2 of CUDA manual)
 - Load data into shared memory
 - Synchronize (if necessary)
 - Operate on data in shared memory
 - Synchronize (if necessary)
 - Write intermediate results to global memory
 - Repeat until done

Can Use Reordering Transformations!

- Analyze reuse in computation
- Apply loop reordering transformations to improve locality based on reuse
- With any loop reordering transformation, always ask
 - Safety? (doesn't reverse dependences)
 - Profitability? (improves locality)
Loop Permutation: A Reordering Transformation

Permute the order of the loops to modify the traversal order

```cpp
for (i = 0; i<3; i++)
for (j=0; j<6; j++)
```

```
for (j=0; j<6; j++)
for (i=0; i<3; i++)
```

Which one is better for row-major storage?

Safety of Permutation

- **Intuition**: Cannot permute two loops \(i \) and \(j \) in a loop nest if doing so reverses the direction of any dependence.
- Loops \(i \) through \(j \) of an \(n \)-deep loop nest are fully permutable if for all dependences \(D \), either
 \[
 (d_{i-1}, \ldots, d_{i-1}) > 0
 \]
 or
 \[
 \text{forall } k, i \leq k \leq j, d_k \geq 0
 \]
- **Stated without proof**: Within the affine domain, \(n-1 \) inner loops of \(n \)-deep loop nest can be transformed to be fully permutable.

Simple Examples: 2-d Loop Nests

- Distance vectors
- Ok to permute?

Tiling (Blocking): Another Loop Reordering Transformation

- Blocking reorders loop iterations to bring iterations that reuse data closer in time

```cpp
for (i=0; i<3; i++)
for (j=0; j<6; j++)
```
Tiling Example

for (j=1; j<M; j++)
 for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i];

Strip mine

for (j=1; j<M; j++)
 for (i=1; i<N; i++)
 for (ii=1; ii<N; ii+=s)
 for (i=ii, i<min(ii+s-1,N), i++)
 D[i] = D[i] + B[j][i];

Permute

for (j=1; j<M; j++)
 for (i=1; i<N; i++)
 for (ii=1; ii<N; ii+=s)
 for (i=ii, i<min(ii+s-1,N), i++)
 D[i] = D[i] + B[j][i];

Legality of Tiling

• Tiling = strip-mine and permutation
 – Strip-mine does not reorder iterations
 – Permutation must be legal
 OR
 – strip size less than dependence distance

A Few Words On Tiling

• Tiling can be used hierarchically to compute partial results on a block of data wherever there are capacity limitations
 – Between grids if data exceeds global memory capacity
 – Across thread blocks if shared data exceeds shared memory capacity
 – Within threads if data in constant cache exceeds cache capacity
 – Special form (unroll-and-jam) used for registers

Locality Optimization

• Reuse analysis can be formulated in a manner similar to dependence analysis
 – Particularly true for temporal reuse
 – Spatial reuse requires special handling of most quickly varying dimension (still ignoring)
• Simplification for today’s lecture
 – Estimate data footprint for innermost loop for different scenarios
 – Select scenario that minimizes footprint
Reuse Analysis:
Use to Estimate Data Footprint

\[\text{for } (i=0; i<N; i++) \]

\[\text{for } (j=0; j<M; j++) \]

Allen & Kennedy:
Innermost memory cost

- Innermost memory cost: \(C_M(L_i) \)
 - Assume \(L_i \) is innermost loop
 - \(i \) = loop variable, \(N \) = number of iterations of \(L_i \)
 - For each array reference \(r \) in loop nest:
 - \(r \) does not depend on \(i \): cost (\(r \)) = 1
 - \(r \) such that \(i \) strides over a dimension: cost (\(r \)) = \(N \)
 - (Can be more precise if taking transfer size into account, ignored today)
 - \(C_M(L_i) \) = sum of cost (\(r \))

Implicit in this cost function is that \(N \) is unknown and sufficiently large that "storage" capacity is exceeded by data footprint in innermost loop.

Canonical Example: matrix multiply
Selecting Loop Order for Cache-based Architecture

\[\text{DO } I = 1, N \]
\[\text{DO } J = 1, N \]
\[\text{DO } K = 1, N \]
\[C(I,J) = C(I,J) + A(I,K) * B(K,J) \]

- \(C_M(I) = 2N^3/\text{cls} + N^2 \)
- \(C_M(J) = 2N^3 + N^2 \)
- \(C_M(K) = N^3 + N^3/\text{cls} + N^2 \)
- Ordering by innermost loop cost: \((J, K, I) \)

Canonical Example: Matrix Multiply
Selecting Tile Size

Choose \(T_i \) and \(T_k \) such that data footprint does not exceed cache capacity

\[\text{DO } K = 1, N \text{ by } T_k \]
\[\text{DO } I = 1, N \text{ by } T_i \]
\[\text{DO } J = 1, N \]
\[\text{DO } II = 1, \min(II+T_i, N) \]
\[\text{DO } KK = K, \min(KK+T_k, N) \]
\[C(II,J) = C(II,J) + A(II,KK) * B(KK,J) \]
"Tiling" for Registers

- A similar technique can be used to map data to registers
- Unroll-and-jam
 - Unroll outer loops in a nest and fuse together resulting inner loops
- Scalar replacement
 - May be followed by replacing array references with scalar variables to help compiler identify register opportunities

Unroll II, TI = 4 (Equiv. to unroll-and-jam)

```
DO K = 1, N by T
DO I = 1, N by 4
DO J = 1, N
DO KK = K, min(KK + T - N)
  C(I,J) = C(I,J) + A(I,KK) * B(KK,J)
  C(I+1,J) = C(I+1,J) + A(I+1,KK) * B(KK,J)
  C(I+2,J) = C(I+2,J) + A(I+2,KK) * B(KK,J)
  C(I+3,J) = C(I+3,J) + A(I+3,KK) * B(KK,J)
```

In other architectures with deep instruction pipelines, this optimization can also be used to expose instruction-level parallelism.

Scalar Replacement

```
DO K = 1, N by T
DO I = 1, N by 4
DO J = 1, N
DO KK = K, min(KK + T - N)
  C1 = C(I,J) + A(I,KK) * B(KK,J)
  C2 = C(I+1,J) + A(I+1,KK) * B(KK,J)
  C3 = C(I+2,J) + A(I+2,KK) * B(KK,J)
  C4 = C(I+3,J) + A(I+3,KK) * B(KK,J)
```

Now C accesses are to named registers.
Compiler guaranteed to map to registers.

Matrix Multiplication
A Simple Host Version in C

```
// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
  for (int i = 0; i < Width; i++)
    for (int j = 0; j < Width; j++)
      double sum = 0;
      for (int k = 0; k < Width; k++)
        double a = M[i * Width + k];
        double b = N[k * Width + j];
        sum += a * b;
      P[i * Width + j] = sum;
}
```
Tiled Multiply Using Thread Blocks

- One block computes one square sub-matrix P_{sub} of size BLOCK_SIZE.
- One thread computes one element of P_{sub}.
- Assume that the dimensions of M and N are multiples of BLOCK_SIZE and square shape.

First-order Size Considerations

- Each Thread Block should have a minimal of 192 threads
 - BLOCK_SIZE of 16 gives 16*16 = 256 threads
- A minimal of 32 Thread Blocks
 - 6,1024*6124 P Matrix gives 64*64 = 4096 Thread Blocks
- Each thread block performs $2\times256 = 512$ float loads from global memory for $256 \times (2\times16) = 8,192$ mul/add operations.
 - Memory bandwidth no longer a limiting factor.

CUDA Code – Kernel Execution Configuration

```c
// Setup the execution configuration
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(N.width / dimBlock.x,
              M.height / dimBlock.y);
```

For very large N and M dimensions, one will need to add another level of blocking and execute the second-level blocks sequentially.

Shared Memory Usage

- Assume each SMP has 16KB shared memory and
 BLOCK_SIZE = 16
 - Each Thread Block uses $2\times256\times4B = 2KB$ of shared memory.
 - Can potentially have up to 8 Thread Blocks actively executing.
 - For BLOCK_SIZE = 16, this allows up to $8\times512 = 4,096$ pending loads.
 - In practice, there will probably be up to half of this due to scheduling to make use of SPs.
 - The next BLOCK_SIZE 32 would lead to $2\times32\times32\times4B = 8KB$ shared memory usage per Thread Block, allowing only up to two Thread Blocks active at the same time.

L7: Memory Hierarchy II
CUDA Code - Kernel Overview

```c
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {
    // code from the next few slides
}
```

CUDA Code - Load Data to Shared Memory

```c
__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix
Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);
Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);
```

CUDA Code - Compute Result

```c
// Synchronize to make sure the sub-matrices are loaded
__syncthreads();

// each thread computes one element of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)
    Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration
__syncthreads();
```

CUDA Code - Save Result

```c
Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element
SetMatrixElement(Psub, tx, ty, Pvalue);
```

This code should run at about 45 GFLOPS