CS6963: Parallel Programming for GPUs
Midterm Exam
March 25, 2009

Instructions:

This is an in-class, open-note exam. Please use the paper provided to submit your
responses. You can include additional paper if needed. The goal of the exam is to
reinforce your understanding of issues we have studied in class.



CS6963: Parallel Programming for GPUs
Midterm Exam
March 25, 2009

I. Definitions (16 points)
Provide a very brief definition of the following terms:
a. Amdahl’s Law

b. Data locality

C. Warp

d. Memory access coalescing
e. Bank conflict

f. SIMD

g. Block

h. Divergent branch

I1. Constraints (4 points)

List a specific constraint on either parallelism (threads, blocks, dimensionality of
each) or memory capacity (for one specific part of the GPU memory hierarchy), and
in one sentence, describe how this impacts your GPU program as compared to a
sequential CPU program.

I11. Problem Solving (80 points)

In this set of five questions, you will be asked to provide code solutions to solve
particular problems. This portion of the exam may take too much time if you write
out the CUDA solution in detail. I will accept responses that sketch the solution,
without necessarily writing out the code or worrying about correct syntax. Just be
sure you have conveyed the intent and issues you are addressing in your solution.



a. Derive dependence distance vectors (including input dependences) for the
following sequential code. Given these distance vectors, how might you perform
transformations and generate CUDA code that makes use of constant memory.

float a[1024][1024], b[1024];

for (j=0; j<1024; j++)
for (i=0; i<1024; i++)
b[j] +=0.25 * (a[i][j-2] + a[i][j-1] + a[i][j+1] + a[i][j+2]);

b. Given the following sequential code, sketch out a CUDA implementation. Derive a
partitioning into threads and blocks that does not exceed various hardware limits.
Assume all data is stored in global memory.

float a[1024][1024], b[1024];

for (i=0; i<1024; i++)
for (j=0; j<1024-i; j++)
b[i+j] += arbitrary_function(a[i][j]);

c. For your response in b above, indicate whether global memory accesses will be
coalesced and whether there will be bank conflicts in shared memory. Explain why
or why not. (Note that if your response for b is incorrect, this will not count against
your answer for this one. If you have skipped b, then use another code example to
respond to c).



d. Given the following CUDA code, describe how you would modify this to derive an
optimized version that will have fewer divergent branches. The functions
even_kernel and odd_kernel compute b from a in different ways. (Note: ‘%’ here is
the standard C mod operator, so the conditional is testing whether the threadldx is
divisible by 2).

Main() {
float h_a[1024], h_b[1024];

/* assume appropriate cudaMalloc called to create d_a and d_b, and d_a is */
/* initialized from h_a using appropriate call to cudaMemcpy */

dim3 dimblock(256);

dim3 dimgrid(4);

compute<<<dimgrid, dimblock,0>>>(d_a,d_b);

/* assume d_b is copied back from the device using call to cudaMemcpy */

}

__global__ compute (float *a, float *b) {
if (threadldx.x % 2 == 0)
(void) even_kernel (a, b);
else /* (threadldx.x % 2 ==1) */
(void) odd_kernel (a, b);
}



e. Given the following CUDA code, add synchronization to derive a correct
implementation that has no race conditions. (Hint: You should be able to simply
insert __synchthreads() calls without modifying the code.)

__global__ compute (float *a, float *b, int BLOCKSIZE) {
_shared__s_a[128],s_b[128];
/* copy portion of input data into shared memory */
s_a[threadldx.x] = a[blockldx.x*BLOCKSIZE + threadldx.x];

/* Time step loop */
for (int t = 0; t<MAX_TIME; t++) {
/* alternate inputs and outputs on even/odd time steps */
if(t% 2==0){
int boundary = min((blockldx.x+1)*BLOCKSIZE-1,
blockDim.x*BLOCKSIZE-1,threadldx+2);
s_b[threadldx.x] = s_a[threadldx.x] + s_a[boundary];
}
else /* (t%2 ==1)*/{
int boundary = min((blockldx.x+1)*BLOCKSIZE-1,
blockDim.x*BLOCKSIZE-1,threadldx+2);
s_a[threadldx.x] = s_b[threadldx.x] + s_b[boundary];

}
}

/* Result is in s_b, and must be copied to b */
b[blockldx.x*BLOCKSIZE + threadldx.x] = s_b[threadldx.x];

}



Extra Credit: (Brief) Essay Question (10 points)
Pick one of the following four topics and write a very brief essay about it, no more
than 3 sentences.

a.

b.

Describe the features of computations that are likely to obtain high speedup
on a GPU as compared to a sequential CPU.

Explain how CUDA threads and blocks are mapped to the GPU and scheduled
for execution.

Consider the architecture of the current GPUs and impact on
programmability. If you could change one aspect of the architecture to
simplify programming, what would it be and why? (You don’t have to
propose an alternative architecture.)

Suppose you could sponsor development of a tool for GPUs --- either for
constructing programs, debugging or performance tuning --- that would
make it easier to develop GPU programs. What would it do for you that is
really hard to do now? (You don’t have to imagine how to build such a tool.)



