L5: Memory Bandwidth Optimization

Administrative

- Next assignment available
- Next three slides
- Goals of assignment:
 - simple memory hierarchy management
 - block-thread decomposition tradeoff
- Due Friday, Feb. 8, 5PM
- Use handin program on CADE machines
 * handin CS6235 lab2 <probfile>*

Assignment 2: Memory Hierarchy Optimization
Due Fri day, February 8 at 5PM

Sobel edge detection:
Find the boundaries of the image where there is significant difference as compared to neighboring "pixels" and replace values to find edges

```
for j = 1; j < ImageNRows; j++
  for (i = 1; i < ImageNCols; i++) {
    sum1 = u[i-1][j+1] - u[i-1][j-1] + 2 * u[i][j+1] - 2 * u[i][j-1] + u[i+1][j+1] - u[i+1][j-1] - 2 * u[i+1][j] - 2 * u[i][j];
    sum2 = u[i-1][j-1] + 2 * u[i-1][j] + u[i-1][j+1] - u[i+1][j-1] - 2 * u[i+1][j] - 2 * u[i+1][j+1];
    magnitude = sum1*sum1 + sum2*sum2;
    if (magnitude > THRESHOLD) e[i][j] = 255;
    else e[i][j] = 0;
  }
```

Example

Input
Output

Magnitude = sum1*sum1 + sum2*sum2;
if (magnitude > THRESHOLD) e[i][j] = 255;
else e[i][j] = 0;

3 L4: Memory Hierarchy I
General Approach

Overview of Lecture

1. Tiling for constant memory and registers
2. Global Memory Coalescing
3. Reading:
 – Chapter 5, Kirk and Hwu book

Review: Targets of Memory Hierarchy Optimizations

• Reduce memory latency
 – The latency of a memory access is the time (usually in cycles) between a memory request and its completion
• Maximize memory bandwidth
 – Bandwidth is the amount of useful data that can be retrieved over a time interval
• Manage overhead
 – Cost of performing optimization (e.g., copying) should be less than anticipated gain

Discussion (Simplified Code)

for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j)
 double sum = 0;
 for (int k = 0; k < Width; ++k)
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 P[i * Width + j] = sum;

for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j)
 double sum = 0;
 for (int k = 0; k < Width; ++k)
 double a = M[i][k];
 double b = N[k][j];
 sum += a * b;
 P[i][j] = sum;
Tiling for shared memory

Now eliminate mods:

P[(ii*Width+jj+kk*TK)] = sum;

Tiling for Registers

• A similar technique can be used to map data to registers
• Unroll-and-jam
 • Unroll outer loops in a nest and fuse together resulting inner loops
 • Equivalent to "strip-mine" followed by permutation and unrolling
• Fusion safe if relative order of memory reads and writes is preserved
• Scalar replacement
 • May be followed by replacing array references with scalar variables to help compiler identify register opportunities
Unroll and Jam: Matrix Multiply Code Example

for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 sum += M[i][k] * N[k][j];
 }
 P[i][j] = sum;
 }

Unroll J Loop and Fuse K Loop Copies

for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum1 = sum2 = 0;
 for (int k = 0; k < Width; ++k) {
 sum1 += M[i][k] * N[k][j];
 sum2 += M[i][k] * N[k][j+1];
 }
 P[i][j] = sum1;
 P[i][j+1] = sum2;
 }

Unroll I and J Loops and Fuse J, K Loop Copies

for (int i = 0; i < Width; i+=2)
 for (int j = 0; j < Width; j+=2) {
 double sum1 = sum2 = sum3 = sum4 = 0;
 for (int k = 0; k < Width; k++) {
 sum1 += M[i][k] * N[k][j];
 sum2 += M[i][k] * N[k][j+1];
 sum3 += M[i+1][k] * N[k][j];
 sum4 += M[i+1][k] * N[k][j+1];
 }
 P[i][j] = sum1;
 P[i][j+1] = sum2;
 P[i+1][j] = sum3;
 P[i+1][j+1] = sum4;
 }

Scalar Replacement (beyond sum)

Scalar Replacement
- Replace array variables with scalar temporaries
- Sometimes this helps compilers put array variables in registers, but not always necessary
- This code is almost always faster than the original on ANY architecture
- More unrolling is better up to a point where registers are exceeded

Why is this helpful?
- Added reuse of N
- More independent memory streams
This code is almost always faster than the original on ANY architecture
More unrolling is better up to a point where registers are exceeded

Why is this helpful?
- Reuse M[i][k], possibly in register
- Two independent memory streams increases instruction-level parallelism
Constant Memory Example

- Signal recognition example:
 - Apply input signal (a vector) to a set of precomputed transform matrices
 - Compute $M_1 V, M_2 V, \ldots, M_n V$

  ```
  __constant__ float d_signalVector[M];
  __device__ float R[N][M];
  __host__ void outerApplySignal()
  {
    float *h_inputSignal;
    dim3 dimGrid(N);
    dim3 dimBlock(M);
    cudaMemcpyToSymbol(d_signalVector, h_inputSignal, M*sizeof(float));
    // input matrix is in d_mat
    ApplySignal<<<dimGrid,dimBlock>>>(d_mat, M);
  }
  __global__ void ApplySignal(float *d_mat, int M)
  {
    float result = 0.0;
    for (j=0; j<M; j++)
    result += d_mat[blockIdx.x][threadIdx.x][j] * d_signalVector[j];
    R[blockIdx.x][threadIdx.x] = result;
  }
  ```

More on Constant Cache

- Example from previous slide
 - All threads in a block accessing same element of signal vector
 - Brought into cache for first access, then latency equivalent to a register access

Overview of Texture Memory

- Recall, texture cache of read-only data
- Special protocol for allocating and copying to GPU
 - texture<Type, Dim, ReadMode> texRef;
 - Dim: 1, 2 or 3 objects
- Special protocol for accesses (macros)
 - tex2D(name, dim1, dim2);
- In full glory can also apply functions to textures
- Writing possible, but unsafe if followed by read in same kernel
 - Should not be in constant memory

Additional Detail

- Suppose each thread accesses different data from constant memory on same instruction
 - Reuse across threads?
 - Consider capacity of constant cache and locality
 - Code transformation needed? -- tile for constant memory, constant cache
 - Cache latency proportional to number of accesses in a warp
 - No reuse?
 - Should not be in constant memory
Using Texture Memory (simpleTexture project from SDK)

cudaMemcpy((void**)&d_data, size);
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, cudaChannelFormatKindFloat);
cudaArray* cu_array;
cudaMallocArray(&cu_array, &channelDesc, width, height);
cudaMemcpyToArray(cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice);
// set texture parameters
tex.addressMode[0] = tex.addressMode[1] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModeLinear; tex.normalized = true;
cudaBindTextureToArray(tex, cu_array, channelDesc);

// execute the kernel
transformKernel<<<dimGrid, dimBlock, 0>>>(d_data, width, height, angle);

Kernel function:
// declare texture reference for 2D float texture
texture<float, 2, cudaReadModeElementType> tex;
... = tex2D(tex, i, j);

When to use Texture (and Surface) Memory

(From 5.3 of CUDA manual) Reading device memory through texture or surface fetching presents some benefits that can make it an advantageous alternative to reading device memory from global or constant memory:

• If memory reads to global or constant memory will not be coalesced, higher bandwidth can be achieved providing that there is locality in the texture fetches or surface reads (this is less likely for devices of compute capability 2.x given that global memory reads are cached on these devices);

• Addressing calculations are performed outside the kernel by dedicated units;

• Packed data may be broadcast to separate variables in a single operation;

• 8-bit and 16-bit integer input data may be optionally converted to 32-bit floating-point values in the range [0.0, 1.0] or [-1.0, 1.0] (see Section 3.2.4.1.1).

Memory Bandwidth Optimization

• Goal is to maximize utility of data for each data transfer from global memory

• Memory system will “coalesce” accesses for a collection of consecutive threads if they are within an aligned 128 byte portion of memory (from half-warp or warp)

• Implications for programming:
 – Desirable to have consecutive threads in tx dimension accessing consecutive data in memory
 – Significant performance impact, but Fermi data cache makes it slightly less important

Introduction to Global Memory Bandwidth: Understanding Global Memory Accesses

Memory protocol for compute capability 1.2* (CUDA Manual 5.1.2.1)

• Start with memory request by smallest numbered thread. Find the memory segment that contains the address (32, 64 or 128 byte segment, depending on data type)

• Find other active threads requesting addresses within that segment and coalesce

• Reduce transaction size if possible

• Access memory and mark threads as “inactive”

• Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms
Protocol for most systems (including lab6 machines) even more restrictive

- For compute capability 1.0 and 1.1
 - Threads must access the words in a segment in sequence
 - The kth thread must access the kth word

```
__global__ void MatrixMulKernel(float *Md, float *Nd, float *Pd, int Width) {

  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

  int bx = blockIdx.x;
  int by = blockIdx.y;
  int tx = threadIdx.x;
  int ty = threadIdx.y;

  // Identify the row and column of the Pd element to work on
  int Row = by * TILE_WIDTH + ty;
  int Col = bx * TILE_WIDTH + tx;

  float Pvalue = 0;
  for (int m = 0; m < Width / TILE_WIDTH; ++m) {
    Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
    Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
    __syncthreads();
    Pvalue += Mds[ty][k] * Nds[k][tx];
    __syncthreads();
  }
  Pd[Row*Width + Col] = Pvalue;
}
```
Summary of Lecture

• How to place data in constant memory and registers
• Introduction to Bandwidth Optimization
 – Global Memory Coalescing