L12: Application Case Studies

Outline

• Discussion of strsm
• Project questions (time at end, too)
• Application Case Studies
 – Advanced MRI Reconstruction
 – Reading: Kirk and Hwu, Chapter 7
 – Material Point Method (time permitting)

Administrative Issues

• Next assignment, triangular solve
 – Due 5PM, Tuesday, March 5
 – handin cs6235 lab 3 <probfile>*
• Project proposals
 –Due 5PM, Friday, March 8
 – handin cs6235 prop <pdffile>

Triangular Solve (STRSM)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
 if (B[j*n+k] != 0.0f) {
 for (i = k+1; i < n; i++)
 B[j*n+i] -= A[k*n+i] * B[j*n+k];
 }

Equivalent to:
cublasStrsm('l' /* left operator */, 'l' /* lower triangular */,
 'N' /* not transposed */, 'u' /* unit triangular */,
 N, N, alpha, d_A, N, d_B, N);

See: http://www.netlib.org/blas/strsm.f
Reconstructing MR Images

Cartesian Scan Data
Spiral Scan Data

Gridding
FFT
LS

Cartesian scan data + FFT: Slow scan, fast reconstruction, images may be poor

Spiral scan data + LS Superior images at expense of significantly more computation

Least-Squares Reconstruction

\[F^H F \rho = F^H d \]

- \(Q \) depends only on scanner configuration
- \(F^H d \) depends on scan data
- \(\rho \) found using linear solver
- Accelerate \(Q \) and \(F^H d \) on GPU
 - \(Q \): 1-2 days on CPU
 - \(F^H d \): 6-7 hours on CPU
 - \(\rho \): 1.5 minutes on CPU

Q v.s. \(F^H d \)

for (m = 0; m < M; m++) {
 phiMag[m] = rPhi[m]*rPhi[m] + iPhi[m]*iPhi[m];
 for (n = 0; n < N; n++) {
 expQ = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
 rQ[n] += phiMag[m]*cos(expQ);
 iQ[n] += phiMag[m]*sin(expQ);
 }
}
(a) \(Q \) computation

for (m = 0; m < M; m++) {
 rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
 iMu[m] = rPhi[m]*iD[m] - iPhi[m]*rD[m];
 for (n = 0; n < N; n++) {
 expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
 cArg = cos(expFhD);
 sArg = sin(expFhD);
 rFhD[n] += rMu[m]*cArg - iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
 }
}
(b) \(F^H d \) computation
Algorithms to Accelerate

- **Scan data**
 - \(M \): # scan points
 - \(k_x, k_y, k_z \): 3D scan data
- **Pixel data**
 - \(N \): # pixels
 - \(x, y, z \): input 3D pixel data
 - \(r_{FhD}, i_{FhD} \): output pixel data
- **Complexity is \(O(MN) \)**
- **Inner loop**
 - 13 FP MUL or ADD ops
 - 2 FP trig ops
 - 12 loads, 2 stores

One Possibility

```c
__global__ void cmpFHd(float* rPhi, iPhi, phiMag, kx, ky, kz, x, y, z, rMu, iMu, int N) {
    int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
    rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
    iMu[m] = rPhi[m]*iD[m] - iPhi[m]*rD[m];
    for (n = 0; n < N; n++) {
        expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
        cArg = cos(expFhD);
        sArg = sin(expFhD);
        rFhD[n] += rMu[m]*cArg - iMu[m]*sArg;
        iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
    }
}
```

This code does not work correctly! The accumulation needs to use atomic operation.

Back to the Drawing Board – Maybe map the \(n \) loop to threads?

```c
for (m = 0; m < M; m++) {
    rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
    iMu[m] = rPhi[m]*iD[m] - iPhi[m]*rD[m];
    for (n = 0; n < N; n++) {
        expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
        cArg = cos(expFhD);
        sArg = sin(expFhD);
        rFhD[n] += rMu[m]*cArg - iMu[m]*sArg;
        iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
    }
}
```

What about \(M \) total threads?

Note: \(M \) is \(O(\text{millions}) \)

(Step 2) What happens to data accesses with this strategy?
for (m = 0; m < M; m++) {
 rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
 iMu[m] = rPhi[m]*iD[m] - iPhi[m]*rD[m];
}

for (n = 0; n < N; n++) {
 expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
 cArg = cos(expFhD);
 sArg = sin(expFhD);
 rFhD[n] += rMu[m]*cArg - iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
} (a) before loop interchange

for (n = 0; n < N; n++) {
 for (m = 0; m < M; m++) {
 expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
 cArg = cos(expFhD);
 sArg = sin(expFhD);
 rFhD[n] += rMu[m]*cArg - iMu[m]*sArg;
 iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
 } (b) after loop interchange

Figure 7.9 Loop interchange of the FHD computation
Step 3. Using Registers to Reduce Global Memory Traffic

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, kx, ky, kz, x, y, z, rMu, iMu, int M) {
 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
 float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
 float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];
 for (m = 0; m < M; m++) {
 float expFhD = 2*PI*(kx[m]*xn_r + ky[m]*yn_r + kz[m]*zn_r);
 float cArg = cos(expFhD);
 float sArg = sin(expFhD);
 rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;
 iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;
 }
 rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

Tiling of Scan Data

LS recon uses multiple grids
- Each grid operates on all pixels
- Each grid operates on a distinct subset of scan data
- Each thread in the same grid operates on a distinct pixel

Thread n operates on pixel n:
for (m = 0; m < M/32; m++) {
 exQ = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n])
 rQ[n] += phi[m]*cos(exQ)
 iQ[n] += phi[m]*sin(exQ)
}

Revised Kernel for Constant Memory

__global__ void cmpFHd(float* x, y, z, rMu, iMu, int M) {
 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
 float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
 float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];
 for (m = 0; m < M; m++) {
 float expFhD = 2*PI*(kx_c[m]*xn_r + ky_c[m]*yn_r + kz_c[m]*zn_r);
 float cArg = cos(expFhD);
 float sArg = sin(expFhD);
 rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;
 iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;
 }
 rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}

Tiling k-space data to fit into constant memory

__constant__ float kx_c[CHUNK_SIZE], ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];
__global__ void main() {
 int i;
 for (i = 0; i < N/CHUNK_SIZE; i++) {
 cudaMemcpyToSymbol(kx_c, &kx[i*CHUNK_SIZE], 4*CHUNK_SIZE);
 cudaMemcpyToSymbol(ky_c, &ky[i*CHUNK_SIZE], 4*CHUNK_SIZE);
 cudaMemcpyToSymbol(kz_c, &kz[i*CHUNK_SIZE], 4*CHUNK_SIZE);
 cmpFHd<<<FHD_THREADS_PER_BLOCK, FHD_THREADS_PER_BLOCK>>>
 (rPhi, iPhi, phiMag, x, y, z, rMu, iMu, int M);
 // Need to call kernel one more time if M is not perfect multiple of CHUNK SIZE
 }
}
Sidebar: Cache-Conscious Data Layout

- kx, ky, kz, and phi components of same scan point have spatial and temporal locality
 - Prefetching
 - Caching
- Old layout does not fully leverage that locality
- New layout does fully leverage that locality

```c
struct kdata {
  float x, float y, float z;
} k;
__constant__ struct kdata k_c[CHUNK_SIZE];
__ void main() {
  int i;
  for (i = 0; i < M/CHUNK_SIZE; i++) {
    cudaMemcpyToSymbol(k_c, k, 12*CHUNK_SIZE);
    cmpFHD<<<FHD_THREADS_PER_BLOCK,N/FHD_THREADS_PER_BLOCK>>>()
  }
}
```

Adjusting K-space Data Layout

```c
__global__ void cmpFHd(float* rPhi, iPhi, phiMag, x, y, z, rMu, iMu, int M) {
  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
  float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
  float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];
  for (m = 0; m < M; m++) {
    float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);
    float cArg = cos(expFhD);
    float sArg = sin(expFhD);
    rFhD[n_] += rMu[m]*cArg - iMu[m]*sArg;
    iFhD[n_] += iMu[m]*cArg + rMu[m]*sArg;
  }
  rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
}
```

Overcoming Mem BW Bottlenecks

- Old bottleneck: off-chip BW
 - Solution: constant memory
 - FP arithmetic to off-chip loads: 421 to 1
- Performance
 - 22.8 GFLOPS (F^2d)
- New bottleneck: trig operations
Using Super Function Units

- Old bottleneck: trig operations
 - Solution: SFUs
- Performance:
 - 92.2 GFLOPS (F^2d)
- New bottleneck: overhead of branches and address calculations

Sidebar: Effects of Approximations

- Avoid temptation to measure only absolute error (I_o – I)
 - Can be deceptively large or small
- Metrics:
 - PSNR: Peak signal-to-noise ratio
 - SNR: Signal-to-noise ratio
- Avoid temptation to consider only the error in the computed value
 - Some apps are resistant to approximations; others are very sensitive

\[
MSE = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (I_i - I_j)^2 \\
SNR = 20 \log_{10} \left(\frac{\text{max} I_i}{\sqrt{MSE}} \right)
\]

Summary of Results

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>GFLOP</th>
<th>GFLOP</th>
<th>Linear Solver (m)</th>
<th>Reconstruction Time (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griding + FFT (CPU, DP)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LS (CPU, DP)</td>
<td>4009.0</td>
<td>0.3</td>
<td>518.0</td>
<td>0.4</td>
<td>1.59</td>
</tr>
<tr>
<td>LS (CPU, SP)</td>
<td>2678.7</td>
<td>0.5</td>
<td>342.1</td>
<td>0.7</td>
<td>1.81</td>
</tr>
<tr>
<td>LS (GPU, Native)</td>
<td>266.2</td>
<td>5.6</td>
<td>41.0</td>
<td>5.4</td>
<td>1.85</td>
</tr>
<tr>
<td>LS (GPU, CMem)</td>
<td>72.0</td>
<td>18.6</td>
<td>9.4</td>
<td>22.8</td>
<td>1.57</td>
</tr>
<tr>
<td>LS (GPU, CMem, SFU)</td>
<td>13.6</td>
<td>98.2</td>
<td>2.4</td>
<td>93.2</td>
<td>1.66</td>
</tr>
<tr>
<td>LS (GPU, CMem, SFU, Exp)</td>
<td>7.5</td>
<td>378.0</td>
<td>1.5</td>
<td>144.5</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Step 4: Overcoming Bottlenecks (Overheads)

- Old bottleneck: overhead of branches and address calculations
 - Solution: Loop unrolling and experimental tuning
- Performance:
 - 145 GFLOPS (F^2d)