L7: Writing Correct Programs

Outline
- How to tell if your parallelization is correct?
- Definitions:
 - Race conditions and data dependences
 - Example
- Reasoning about race conditions
- A Look at the Architecture:
 - How to protect memory accesses from race conditions?
 - Synchronization within a block: `__syncthreads();`
 - Synchronization across blocks (through global memory)
 - `atomicOperations` (example)
 - `memoryFences`
- Debugging

Administrative
- Next assignment available
 - Goals of assignment:
 - Simple memory hierarchy management
 - Block-thread decomposition tradeoff
 - Due Friday, Feb. 10, 5PM
 - Use `handin` program on CADE machines
 - `*handin CS6235 lab2 <problemfile>*`

Timing Code for Assignment
- Timing example (excerpt from `simpleStreams` in CUDA SDK):
  ```c
  cudaEvent_t start_event, stop_event;
  cudaEventCreate(&start_event);
  cudaEventCreate(&stop_event);
  cudaEventRecord(start_event, 0);
  init_array<<<blocks, threads>>>(d_a, d_c, niterations);
  cudaEventRecord(stop_event, 0);
  cudaEventSynchronize(stop_event);
  cudaEventElapsedTime(&elapsed_time, start_event, stop_event);
  ```
What can we do to determine if parallelization is correct in CUDA?

- Deviceemu code (to be emulated on host, executed serially)
- Versions prior to CUDA 3.x
- Can compare GPU output to CPU output, or compare GPU output to device emulation output
- Race condition may still be present
- Debugging environments (new!)
 - CUDA gdb (Linux)
 - Parallel Nsight (Windows and Vista)

We’ll come back to both of these at the end.

- Or can (try to) prevent introduction of race conditions (bulk of lecture)

What if we computed sum on GPU?

- Global, device functions and excerpts from host, main
- Compute individual results for each thread
- Serialize final results gathering on host

Each thread increments “sum” variable

Threads Access the Same Memory!

- Global memory and shared memory within an SM can be freely accessed by multiple threads
- Requires appropriate sequencing of memory accesses across threads to same location if at least one access is a write
More Formally: Race Condition or Data Dependence

- A **race condition** exists when the result of an execution depends on the **timing** of two or more events.
- A **data dependence** is an ordering on a pair of memory operations that must be preserved to maintain correctness.

Data Dependence

- **Definition:** Two memory accesses are involved in a data dependence if they may refer to the same memory location and one of the references is a write.

 A data dependence can either be between two distinct program statements or two different dynamic executions of the same program statement.

 - Two important uses of data dependence information (among others):
 - **Parallelization:** no data dependence between two computations \Rightarrow parallel execution safe
 - **Locality optimization:** absence of data dependences & presence of reuse \Rightarrow reorder memory accesses for better data locality (next week)

Data Dependence of Scalar Variables

- **True (flow) dependence** $a \Rightarrow a$
- **Anti-dependence** $b = a$
- **Output dependence** $a \Rightarrow a$
- **Input dependence (for locality)** $a \Rightarrow a$

Definition: Data dependence exists from a reference instance i to i' iff either i or i' is a write operation i and i' refer to the same variable i executes before i'

Some Definitions (from Allen & Kennedy)

- **Definition 2.5:**
 - Two computations are equivalent if, on the same inputs,
 - they produce identical outputs
 - the outputs are executed in the same order

- **Definition 2.6:**
 - A reordering transformation
 - changes the order of statement execution
 - without adding or deleting any statement executions.

- **Definition 2.7:**
 - A reordering transformation preserves a dependence if
 - it preserves the relative execution order of the dependences' source and sink

Fundamental Theorem of Dependence

- Theorem 2.2:
 - Any reordering transformation that preserves every dependence in a program preserves the meaning of that program.

Parallelization as a Reordering Transformation in CUDA

```
__host callkernel() {
    dim3 blocks(bx, by);
    dim3 threads(tx, ty, tz);
    kernelcode<kernels, threadblocks>(<args>);
}

__global kernelcode(<args>) {
    /* code refers to threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x, blockIdx.y */
}
```

EQUIVALENT?

For all (or CUDA kernels or Doall) loops:
Loops whose iterations can execute in parallel (a particular reordering transformation)

Example
```
forall (i=1; i<=n; i++)
A[i] = B[i] + C[i];
```

Meaning?
Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept for data-parallel programming models?

CUDA Equivalent to "Forall"

```
__host callkernel() {
    for (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {
        for (int bIdx_y=0; bIdx_y<by; bIdx_y++) {
            for (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {
                for (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {
                    for (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {
                        /* code refers to threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x, blockIdx.y */
                    }
                }
            }
        }
    }
```

EQUIVALENT?
Using Data Dependences to Reason about Race Conditions

• Compiler research on data dependence analysis provides a systematic way to conservatively identify race conditions on scalar and array variables
 - “Forall” if no dependences cross the iteration boundary of a parallel loop. (no loop-carried dependences)
 - If a race condition is found,
 - EITHER serialize loop(s) carrying dependence by making it internal to thread program, or part of the host code
 - OR add “synchronization”

Back to our Example: What if Threads Need to Access Same Memory Location

• Dependence on sum across iterations/threads
 - But reordering ok since operations on sum are associative
• Load/increment/store must be done atomically to preserve sequential meaning
• Add Synchronization
 - Protect memory locations
 - Control-based (what are threads doing?)
• Definitions:
 - **Atomicity**: a set of operations is atomic if either they all execute or none executes. Thus, there is no way to see the results of a partial execution.
 - **Mutual exclusion**: at most one thread can execute the code at any time
 - **Barrier**: forces threads to stop and wait until all threads have arrived at some point in code, and typically at the same point

Gathering Results on GPU: Barrier Synchronization w/in Block

```c
void __syncthreads();
```

- **Functionality:** Synchronizes all threads in a block
 - Each thread waits at the point of this call until all other threads have reached it
 - Once all threads have reached this point, execution resumes normally
- **Why is this needed?**
 - A thread can freely read the shared memory of its thread block or the global memory of either its block or grid.
 - Allows the program to guarantee partial ordering of these accesses to prevent incorrect orderings.
- **Watch out!**
 - Potential for deadlock when it appears in conditionals

Gathering Results on GPU for "Count 6"

```c
__global__
void compute(int *d_in, int *d_out, int *d_sum)
{
  d_out[threadIdx.x] = 0;
  for (int i = 0; i < SIZE/BLOCKSIZE; ++i) {
    int val = d_in[i*BLOCKSIZE + threadIdx.x];
    d_out[threadIdx.x] += compare(val, 6);
  }
}

__global__
void compute(int *d_in, int *d_out, int *d_sum) {
  global void compute(int *d_in, int *d_sum) {
    d_out[threadIdx.x] = 0;
    for (int i = 0; i < SIZE/BLOCKSIZE; ++i) {
      int val = d_in[i*BLOCKSIZE + threadIdx.x];
      d_out[threadIdx.x] += compare(val, 6);
    }
  }
}
```

```c
__syncthreads();
if (threadIdx.x == 0) { 
  for (0..BLOCKSIZE-1)
    *d_sum += d_out[i];
}
```
Gathering Results on GPU:
Atomic Update to Sum Variable

int atomicAdd(int* address, int val);
Increments the integer at address by val.

Atomic means that once initiated, the operation executes to completion without interruption by other threads.

Available Atomic Functions
All but CAS take two operands (unsigned int *address, int (or other type) val):

Arithmetic:
• atomicAdd() - add val to address
• atomicSub() - subtract val from address
• atomicExch() - exchange val at address, return old value
• atomicMax()
• atomicMin()
• atomicInc()
• atomicDec()
• atomicCAS()

Bitwise Functions:
• atomicAnd()
• atomicOr()
• atomicXor()

See Appendix B.11 of NVIDIA CUDA 3.2 Programming Guide

Gathering Results on GPU for “Count 6”

```c
__global__ void compute(int *d_in, int *d_out)
{
    d_out[threadIdx.x] = 0;
    for (i=0; i<SIZE/BLOCKSIZE; i++)
    {
        int val = d_in[i*BLOCKSIZE + threadIdx.x];
        d_out[threadIdx.x] += compare(val, 6);
    }
}
```

```c
__global__ void compute(int *d_in, int *d_out, int *d_sum)
{
    d_out[threadIdx.x] = 0;
    for (i=0; i<SIZE/BLOCKSIZE; i++)
    {
        int val = d_in[i*BLOCKSIZE + threadIdx.x];
        d_out[threadIdx.x] += compare(val, 6);
    }
    atomicAdd(d_sum, d_out_array[threadIdx.x]);
}
```

Efficient? Find right granularity.

Atomic Operations

• Only available for devices with compute capability 1.1 or higher
• Operating on shared memory and for either 32-bit or 64-bit global data for compute capability 1.2 or higher
• 64-bit in shared memory for compute capability 2.0 or higher
• atomicAdd for floating point (32-bit) available for compute capability 2.0 or higher (otherwise, just signed and unsigned integer).
Synchronization Within/Across Blocks: Memory Fence Instructions

void __threadfence_block();
• waits until all global and shared memory accesses made by the calling thread prior to call are visible to all threads in the thread block. In general, when a thread issues a series of writes to memory in a particular order, other threads may see the effects of these memory writes in a different order.

void __threadfence();
• Similar to above, but visible to all threads in the device for global memory accesses and all threads in the thread block for shared memory accesses.

void __threadfence_system();
• Similar to above, but also visible to host for "page-locked" host memory accesses.

Appendix B.5 of NVIDIA CUDA Programming Manual

Memory Fence Example

__device__ unsigned int count = 0;
__shared__ bool isLastBlockDone;

__global__ void sum(const float* array, unsigned int N, float* result)
{
 // Each block sums a subset of the input array
 float partialSum = calculatePartialSum(array, N);
 if (threadIdx.x == 0)
 {
 // Thread 0 of each block stores the partial sum
 result[blockIdx.x] = partialSum;
 // Thread 0 makes sure its result is visible to all other threads
 __threadfence();
 // Thread 0 of each block signals that it is done
 unsigned int value = atomicInc(&count, gridDim.x);
 // Thread 0 of each block determines if its block is the last block to be done
 isLastBlockDone = (value == (gridDim.x - 1));
 }
 __syncthreads();
 if (isLastBlockDone)
 {
 // The last block sums the partial sums
 float totalSum = calculateTotalSum(result);
 if (threadIdx.x == 0)
 {
 // Thread 0 of last block stores total sum
 result[0] = totalSum;
 // resets count so that next kernel call works properly
 count = 0;
 }
 }
}

Host-Device Transfers (implicit in synchronization discussion)

• Host-Device Data Transfers
 – Device to host memory bandwidth much lower than device to device bandwidth
 – 8 GB/s peak (PCI-e x16 Gen 2) vs. 102 GB/s peak (Tesla C1060)

• Minimize transfers
 – Intermediate data can be allocated, operated on, and deallocated without ever copying to host memory

• Group transfers
 – One large transfer much better than many small ones

Slide source: Nvidia, 2008

Asynchronous Copy To/From Host (compute capability 1.1 and above)

• Concept:
 – Memory bandwidth can be a limiting factor on GPUs
 – Sometimes computation cost dominated by copy cost
 – But for some computations, data can be "tiled" and computation of tiles can proceed in parallel (some of your projects may want to do this, particularly for large data sets)
 – Can we be computing on one tile while copying another?

• Strategy:
 – Use page-locked memory on host, and asynchronous copies
 – Primitive cudaMemcpyAsync
 – Effect is GPU performs DMA from Host Memory
 – Synchronize with cudaThreadSynchronize()
Page-Locked Host Memory

- How the Async copy works:
 - DMA performed by GPU memory controller
 - CUDA driver takes virtual addresses and translates them to physical addresses
 - Then copies physical addresses onto GPU
 - Now what happens if the host OS decides to swap out the page???
- Special malloc holds page in place on host
 - Prevents host OS from moving the page
 - CudaMallocHost()
- But performance could degrade if this is done on lots of pages!
 - Bypassing virtual memory mechanisms

Example of Asynchronous Data Transfer

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst1, src1, size, dir, stream1);
kernel<<<grid, block, 0, stream1>>>(...);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel<<<grid, block, 0, stream2>>>(...);

src1 and src2 must have been allocated using cudaMallocHost
stream1 and stream2 identify streams associated with asynchronous call (note 4th “parameter” to kernel invocation, by default there is one stream)

Code from asyncAPI SDK project

// allocate host memory
CUDA_SAFE_CALL(cudaMallocHost((void**)&a, nbytes));
memset(a, 0, nbytes);

// allocate device memory
CUDA_SAFE_CALL(cudaMalloc((void**)&d_a, nbytes));
CUDA_SAFE_CALL(cudaMemset(d_a, 255, nbytes));

// declare grid and thread dimensions and create start and stop events
cudaEventRecord(start, 0);
cudaMemcpyAsync(d_a, a, nbytes, cudaMemcpyHostToDevice, 0);
iccrement_kernel<<<blocks, threads, 0, 0>>>(d_a, value);
cudaMemcpyAsync(a, d_a, nbytes, cudaMemcpyDeviceToHost, 0);
cudaEventRecord(stop, 0);

// have CPU do some work while waiting for GPU to finish
// release resources
CUDA_SAFE_CALL(cudaFreeHost(a));
CUDA_SAFE_CALL(cudaFree(d_a));

More Parallelism to Come
(Compute Capability 2.0)

Stream concept: create, destroy, tag asynchronous operations with stream
- Special synchronization mechanisms for streams: queries, waits and synchronize functions
- Concurrent Kernel Execution
 - Execute multiple kernels (up to 4) simultaneously
- Concurrent Data Transfers
 - Can concurrently copy from host to GPU and GPU to host using asynchronous Memcpys

Section 3.2.6 of CUDA manual

L7: Writing Correct Programs
Debugging: Run-time functions & macros for error checking

In CUDA run-time services,
cudaGetDeviceProperties(deviceProp &dp, d);
check number, type and whether device present
In libcutil.a of Software Developers’ Kit,
cutComparef (float *ref, float *data, unsigned len);
compare output with reference from GPU implementation
In cutil.h of Software Developers’ Kit (with #define _DEBUG or -D_DEBUG compile flag),
CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>))
check for error in run-time call and exit if error detected
CUT_SAFE_MALLOC(cudaMalloc(<args>));
similar to above, but for malloc calls
CUT_CHECK_ERROR("error message goes here");
check for error immediately following kernel execution and
if detected, exit with error message

Summary of Lecture

• Data dependence can be used to determine the safety of reordering transformations such as parallelization
• preserving dependences = preserving “meaning”
• In the presence of dependences, synchronization is needed to guarantee safe access to memory
• Synchronization mechanisms on GPs:
 – __syncthreads() barrier within a block
 – Atomic functions on locations in memory across blocks
 – Memory fences within and across blocks, and host page-locked memory
• More concurrent execution
 – Host page-locked memory
 – Concurrent streams
• Debugging your code

Next Time

• Control Flow
 – Divergent branches