CS4961 Parallel Programming

Lecture 8: Dependences and Locality Optimizations

Mary Hall
September 15, 2011

Administrative

• I will be on travel Tuesday, September 20
• Nikhil will hold lab hours to complete the programming assignment
 - ROOM L130

Programming Assignment 1: Due Wednesday, Sept. 21, 11:59PM
To be done on water.eng.utah.edu (you all have accounts - passwords available if your CS account doesn’t work)

1. Write an average of a set of numbers in OpenMP for a problem size and data set to be provided. Use a block data distribution.

2. Write the same computation in Pthreads.

Report your results in a separate README file.
- What is the parallel speedup of your code? To compute parallel speedup, you will need to time the execution of both the sequential and parallel code, and report speedup = Time(seq) / Time(parallel)
- If your code does not speed up, you will need to adjust the parallelism granularity, the amount of work each processor does between synchronization points.
- Report results for two different numbers of threads.

Extra credit: Rewrite both codes using a cyclic distribution

Programming Assignment 1, cont.

A test harness is provided in avg-test-harness.c that provides a sequential average, validation, speedup timing and substantial instructions on what you need to do to complete the assignment.

Here are the key points:
- You’ll need to write the parallel code, and the things needed to support that. Read the top of the file, and search for “TODO”.
- Compile w/ OpenMP: cc -o avg-openmp -O3 -xopenmp avg-openmp.c
- Compile w/ Pthreads: cc -o avg-pthreads -O3 avg-pthreads.c -lpthread
- Run OpenMP version: ./avg-openmp > openmp.out
- Run Pthreads version: ./avg-pthreads > pthreads.out

Note that editing on water is somewhat primitive - I'm using vim, apparently, you can edit on CADE machines and just run on water. Or you can try vim, too.
Today's Lecture

- Data Dependences
 - How compilers reason about them
 - Informal determination of parallelization safety
- Locality
 - Data reuse vs. data locality
 - Reordering transformations for locality
- Sources for this lecture:
 - Notes on website

Data Dependence and Related Definitions

- Definition:
 Two memory accesses are involved in a data dependence if they may refer to the same memory location and one of the references is a write.
 A data dependence can either be between two distinct program statements or two different dynamic executions of the same program statement.

- Source:

Fundamental Theorem of Dependence

- Theorem 2.2:
 - Any reordering transformation that preserves every dependence in a program preserves the meaning of that program.

In this course, we consider two kinds of reordering transformations

- Parallelization
 - Computations that execute in parallel between synchronization points are potentially reordered. Is that reordering safe? According to our definition, it is safe if it preserves the dependences in the code.
- Locality optimizations
 - Suppose we want to modify the order in which a computation accesses memory so that it is more likely to be in cache. This is also a reordering transformation, and it is safe if it preserves the dependences in the code.
- Reduction computations
 - We have to relax this rule for reductions. It is safe to reorder reductions for commutative and associative operations.
Targets of Memory Hierarchy Optimizations

- Reduce memory latency
 - The latency of a memory access is the time (usually in cycles) between a memory request and its completion
- Maximize memory bandwidth
 - Bandwidth is the amount of useful data that can be retrieved over a time interval
- Manage overhead
 - Cost of performing optimization (e.g., copying) should be less than anticipated gain

Reuse and Locality

- Consider how data is accessed
 - Data reuse:
 - Same or nearby data used multiple times
 - Intrinsic in computation
 - Data locality:
 - Data is reused and present in "fast memory"
 - Same data or same data transfer
- If a computation has reuse, what can we do to get locality?
 - Appropriate data placement and layout
 - Code reordering transformations

Exploiting Reuse: Locality optimizations

- We will study a few loop transformations that reorder memory accesses to improve locality.
- These transformations are also useful for parallelization too (to be discussed later).
- Two key questions:
 - Safety:
 - Does the transformation preserve dependences?
 - Profitability:
 - Is the transformation likely to be profitable?
 - Will the gain be greater than the overheads (if any) associated with the transformation?

Loop Transformations: Loop Permutation

Permute the order of the loops to modify the traversal order

\[
\begin{align*}
\text{for } (i=0; i<3; i++) \\
\text{ for } (j=0; j<6; j++) \\
\end{align*}
\]

\[
\begin{align*}
\text{for } (j=0; j<6; j++) \\
\text{ for } (i=0; i<3; i++) \\
\end{align*}
\]

NOTE: C multi-dimensional arrays are stored in row-major order, Fortran in column major
Tiling (Blocking):
Another Loop Reordering Transformation

- Blocking reorders loop iterations to bring iterations that reuse data closer in time
- Goal is to retain in cache/register/scratchpad (or other constrained memory structure) between reuse

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
D[i] = D[i] + B[j,i]

Strip
for (ii=1; ii<N; ii+=s)
for (j=1; j<M; j++)
for (i=ii; i<min(ii+s-1,N); i++)
D[i] = D[i] + B[j,i]

Permute
for (ii=1; ii<N; ii+=s)
for (j=1; j<M; j++)
for (i=ii; i<min(ii+s-1,N); i++)
D[i] = D[i] + B[j,i]

Unroll, Unroll-and-Jam

- Unroll simply replicates the statements in a loop, with the number of copies called the unroll factor
- As long as the copies don't go past the iterations in the original loop, it is always safe
 - May require "cleanup" code
- Unroll-and-jam involves unrolling an outer loop and fusing together the copies of the inner loop (not always safe)
- One of the most effective optimizations there is, but there is a danger in unrolling too much

How does Unroll-and-Jam benefit locality?

- Temporal reuse of B in registers
- More if I loop is unrolled further
Other advantages of Unroll-and-Jam

- Less loop control
- Independent computations for instruction-level parallelism

Original:
```
for (i=0; i<4; i++)
for (j=0; j<8; j++)
A[i][j] = B[j+1][i] + B[j+1][i+1];
```

Unroll-and-jam i and j loops
```
for (i=0; i<4; i+=2)
for (j=0; j<8; j+=2) {
    A[i][j] = B[j+1][i] + B[j+1][i+1];
    A[i+1][j] = B[j+1][i+1] + B[j+1][i+2];
    A[i][j+1] = B[j+2][i] + B[j+2][i+1];
    A[i+1][j+1] = B[j+2][i+1] + B[j+2][i+2];
}
```

How to determine safety of reordering transformations

- Informally
 - Must preserve relative order of dependence source and sink
 - So, cannot reverse order
- Formally
 - Tracking dependences
 - A simple abstraction: Distance vectors

Brief Detour on Parallelizable Loops as a Reordering Transformation

For all or Doall loops:
Loops whose iterations can execute in parallel (a particular reordering transformation)
Example
```
forall (i=1; i<=n; i++)
    A[i] = B[i] + C[i];
```
Meaning?
Each iteration can execute independently of others
Free to schedule iterations in any order (e.g., pragma omp forall)
Source of scalable, balanced work
Common to scientific, multimedia, graphics & other domains

Data Dependence for Arrays

- Loop-Carried dependence
- Loop-Independent dependence

• Recognizing parallel loops (intuitively)
 - Find data dependences in loop
 - No dependences crossing iteration boundary → parallelization of loop’s iterations is safe
1. Characterize Iteration Space

- Iteration instance: represented as coordinates in iteration space
- *n*-dimensional discrete cartesian space for *n* deep loop nests
- Lexicographic order: Sequential execution order of iterations

 - \([1,1], [1,2], ..., [1,6], [1,7], [2,2], [2,3], ..., [2,6], ... \)

- Iteration \(I \) (a vector) is lexicographically less than \(I' \), \(I < I' \), iff there exists \(c \) \((i_1, ..., i_{c-1}) = (i'_1, ..., i'_{c-1}) \) and \(i_c < i'_c \).

```java
for (i=1; i<=5; i++)
  for (j=i; j<=7; j++)
```

2. Compare Memory Accesses across Dynamic Instances in Iteration Space

- How to describe relationship between two dynamic instances?
 e.g., \(I = [1,1] \) and \(I' = [2,2] \)

Distance Vectors

- Distance vector = \([1,1]\)

 - A loop has a distance vector \(D \) if there exists data dependence from iteration vector \(I \) to a later vector \(I' \).

- Since \(I < I' \), \(D = I' - I \)

- \(D \) is lexicographically greater than or equal to 0.

Distance and Direction Vectors

- Distance vectors: (infinitely large set)

 - Direction vectors: (realizable if 0 or lexicographically positive)

 \([=,=], [=,<], [<,=], [<,>]\)

- Common notation:

 \(0\) =

 \(+\) <

 \(-\) >

 \(+/−\) *
Parallelization Test: 1-Dimensional Loop

- Examples:

 \[
 \begin{align*}
 &\text{for } (i=1; i \leq N; i++) \\
 &\quad \text{for } (j=1; j \leq N; j++) \\
 &\quad \quad A[i, j] = A[i, j] + 1; \\
 &\quad B[i, j] = B[i-1, j-1] + 1;
 \end{align*}
 \]

- Dependence (Distance) Vectors?

- Test for parallelization:

 - A 1-d loop is parallelizable if for all data dependences \(D \in D, D = 0 \)

n-Dimensional Loop Nests

\[
\begin{align*}
&\text{for } (i=1; i \leq N; i++) \\
&\quad \text{for } (j=1; j \leq N; j++) \\
&\quad \quad A[i, j] = A[i, j-1] + 1; \\
&\quad \text{for } (i=1; i \leq N; i++) \\
&\quad \quad \text{for } (j=1; j \leq N; j++) \\
&\quad \quad \quad A[i, j] = A[i-1, j-1] + 1;
\end{align*}
\]

- Distance vectors?

- Definition: \(D = (d_1, \ldots, d_n) \) is loop-carried at level \(i \) if \(d_i \) is the first nonzero element.

Test for Parallelization

The \(i \)th loop of an \(n \)-dimensional loop is parallelizable if there does not exist any level \(i \) data dependences.

The \(i \)th loop is parallelizable if for all dependences \(D = (d_1, \ldots, d_n) \), either

- \(d_1, \ldots, d_{i-1} > 0 \)
- \(d_1, \ldots, d_i = 0 \)

Back to Locality: Safety of Permutation

- Intuition: Cannot permute two loops \(i \) and \(j \) in a loop nest if doing so reverses the direction of any dependence.

- Loops \(i \) through \(j \) of an \(n \)-deep loop nest are fully permutable if for all dependences \(D \), either

 \((d_1, \ldots, d_i) > 0 \)

 or

 \((d_1, \ldots, d_j) > 0 \)

 or

 \(\forall k, i \leq k \leq j, d_k \geq 0 \)

- Stated without proof: Within the affine domain, \(n-1 \) inner loops of an \(n \)-deep loop nest can be transformed to be fully permutable.
Simple Examples: 2-d Loop Nests

- Distance vectors
- Ok to permute?

```plaintext
for (i=0; i<3; i++)
for (j=0; j<6; j++)
```

- Distance vectors
- Ok to permute?

```plaintext
for (i=0; i<3; i++)
for (j=1; j<6; j++)
```

Safety of Tiling

- Tiling = strip-mine and permutation
 - Strip-mine does not reorder iterations
 - Permutation must be legal
 - strip size less than dependence distance

Safety of Unroll-and-Jam

- Unroll-and-jam = tile + unroll
 - Permutation must be legal
 - unroll less than dependence distance

Unroll-and-jam = tile + unroll?

Original:

```plaintext
for (i=0; i<4; i++)
for (j=0; j<8; j++)
A[i][j] = B[j+i][i]
```

Tile i loop:

```plaintext
for (i=0; i<4; i++)
for (j=0; j<8; j++)
for (i=2; i<4; i++)
A[i][j] = B[j+i][i]
```

Unroll i tile:

```plaintext
for (i=0; i<4; i++)
for (j=2; j<8; j++)
A[i][j] = B[j+i][i]
A[i+1][j] = B[j+i][i+1]
```
