L15: CUDA, cont.
Memory Hierarchy and Examples

November 1, 2011

Programming Assignment 3, Due 11:59PM Nov 7

• Purpose:
 - Synthesize the concepts you have learned so far
 - Data parallelism, locality and task parallelism
 - Image processing computation adapted from a real application
• Turn in using handin program on CADE machines
 - Handin cs4961 proj3 <file>
 - Include code + README
• Three Parts:
 1. Locality optimization (50%): Improve performance using locality optimizations only (no parallelism)
 2. Data parallelism (20%): Improve performance using locality optimizations plus data parallel constructs in OpenMP
 3. Task parallelism (30%): Code will not be faster by adding task parallelism, but you can improve time to first result.

Here's the code

```c
/* Initialize th[i][j] = 0 */

/* compute array convolution */
for(m = 0; m < IMAGE_NROWS - TEMPLATE_NROWS + 1; m++)
  for(n = 0; n < IMAGE_NCOLS - TEMPLATE_NCOLS + 1; n++)
    for(i=0; i < TEMPLATE_NROWS; i++)
      for(j=0; j < TEMPLATE_NCOLS; j++)
        if(mask[i][j] != 0) {
            th[m][n] += image[i+m][j+n];
        }

/* scale array with bright count and template bias */

th[i][j] = th[i][j] * bc - bias;
```
Things to think about

- Beyond the assigned work, how does parallelization affect the profitability of locality optimizations?
- What happens if you make the IMAGE SIZE larger (1024x1024 or even 2048x2048)?
 - You'll need to use "unlimit stacksize" to run these.
- What happens if you repeat this experiment on a different architecture with a different memory hierarchy (in particular, smaller L2 cache)?
- How does SSE or other multimedia extensions affect performance and optimization selection?

Shared Memory Architecture 2:
Sun UltraSparc T2 Niagara (water)

More on Niagara

- Target applications are server-class, business operations
- Characterization:
 - Floating point?
 - Array-based computation?
- Support for VIS 2.0 SIMD instruction set
- 64-way multithreading (8-way per processor, 8 processors)

Targets of Memory Hierarchy Optimizations

- Reduce memory latency
 - The latency of a memory access is the time (usually in cycles) between a memory request and its completion
 - Optimizations: Data placement in nearby portion of memory hierarchy (focus on registers and shared memory in this class)
- Maximize memory bandwidth
 - Bandwidth is the amount of useful data that can be retrieved over a time interval
 - Optimizations: Global memory coalescing, avoid shared memory bank conflicts
- Manage overhead
 - Cost of performing optimization (e.g., copying) should be less than anticipated gain
 - Requires sufficient reuse to amortize cost of copies to shared memory, for example
Global Memory Accesses

- Each thread issues memory accesses to data types of varying sizes, perhaps as small as 1 byte entities.
- Given an address to load or store, memory returns/updates “segments” of either 32 bytes, 64 bytes or 128 bytes.
- Maximizing bandwidth:
 - Operate on an entire 128 byte segment for each memory transfer.

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2* (CUDA Manual 5.1.2.1)

- Start with memory request by smallest numbered thread. Find the memory segment that contains the address (32, 64 or 128 byte segment, depending on data type).
- Find other active threads requesting addresses within that segment and coalesce.
- Reduce transaction size if possible.
- Access memory and mark threads as “inactive”.
- Repeat until all threads in half-warp are serviced.

*Includes Tesla and GTX platforms.
Now Let’s Look at Shared Memory

- Common Programming Pattern (5.1.2 of CUDA manual)
 - Load data into shared memory
 - Synchronize (if necessary)
 - Operate on data in shared memory
 - Synchronize (if necessary)
 - Write intermediate results to global memory
 - Repeat until done

Familiar concept???

Mechanics of Using Shared Memory

- __shared__ type qualifier required
- Must be allocated from global/device function, or as “extern”
- Examples:

```c
extern __shared__ float d_s_array[];
/* a form of dynamic allocation */
/* MEMSIZE is size of per-block */
__host__ void outerCompute() {
  compute<<<gs,bs,MEMSIZE>>();
}
__global__ void compute() {
  d_s_array[i] = …;
}
__global__ void compute2() {
  __shared__ float d_s_array[M];
  /* create or copy from global memory */
  d_s_array[j] = …;
  /* write result back to global memory */
  d_g_array[j] = d_s_array[j];
}
```

Bandwidth to Shared Memory: Parallel Memory Accesses

- Consider each thread accessing a different location in shared memory
- Bandwidth maximized if each one is able to proceed in parallel
- Hardware to support this
 - Banked memory: each bank can support an access on every memory cycle

Bank Addressing Examples

- No Bank Conflicts
 - Linear addressing
 - `stride == 1`

- No Bank Conflicts
 - Random 1:1 Permutation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign
Bank Addressing Examples

- **2-way Bank Conflicts**
 - Linear addressing
 - stride == 2

- **8-way Bank Conflicts**
 - Linear addressing
 - stride == 8

How addresses map to banks on G80 (older technology)

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp

Shared memory bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts

 - The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp access the identical address, there is no bank conflict (broadcast)

 - The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank

Example: Matrix vector multiply

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        a[i] += c[j][i] * b[j];
    }
}
```

Remember to:
- Consider data dependences in parallelization strategy to avoid race conditions
- Derive a partition that performs global memory coalescing
- Exploit locality in shared memory and registers
Let's Take a Closer Look

- Implicitly use tiling to decompose parallel computation into independent work
- Additional tiling is used to map portions of \(b \) to shared memory since it is shared across threads
- \(a \) has reuse within a thread so use a register

Resulting CUDA code (Automatically Generated by our Research Compiler)

```c
__global__ mv_GPU(float* a, float* b, float** c) {
    int bx = blockIdx.x; int tx = threadIdx.x;
    __shared__ float bcpy[32];
    double acpy = a[tx + 32 * bx];
    for (k = 0; k < 32; k++) {
        bcpy[tx] = b[32 * k + tx];
    }
    __syncthreads();
    for (j = 32 * k; j <= 32 * k + 32; j++) {
        acpy = acpy + c[j][32 * bx + tx] * bcpy[j];
    }
    __syncthreads();
    a[tx + 32 * bx] = acpy;
}
```

What happens if we transpose \(C \)?

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        a[i] += c[i][j] * b[j];
    }
}
```

Resulting CUDA code for Transposed Matrix Vector Multiply

```c
__global__ mv_GPU(float* a, float* b, float** c) {
    int bx = blockIdx.x; int tx = threadIdx.x;
    __shared__ float bcpy[16];
    __shared__ float P1[16][17]; //pad
double acpy = a[tx + 16 * bx];
    for (k = 0; k < 16; k++) {
        bcpy[tx] = b[16 * k + tx];
    }
    for (l=0; l<16; l++) {
        P1[l][tx] = c[k*bx+l][16*bx+tx]; // copy in coalesced order
    }
    __syncthreads();
    for (j = 16 * k; j <= 16 * k + 16; j++) {
        acpy = acpy + P1[l][tx] * bcpy[j];
    }
    __syncthreads();
    a[tx + 16 * bx] = acpy;
}
```

What else do we need to worry about?
Summary of Lecture

• A deeper probe of performance issues
 - Execution model
 - Control flow
 - Heterogeneous memory hierarchy
 - Locality and bandwidth
 - Tiling for CUDA code generation