L21: “Irregular” Graph Algorithms

November 11, 2010

Administrative

- Class cancelled, November 16!
- Guest Lecture, November 18, Matt Might
- CUDA Projects status
 - Available on CADE Linux machines (lab1 and lab3) and Windows machines (lab5 and lab6)
 - libcutil.a (in SDK) only installed on Linux machines
 - Windows instructions, but cannot do timings

Programming Assignment #3: Simple CUDA

Due Monday, November 22, 11:59 PM

Today we will cover Successive Over Relaxation. Here is the sequential code for the core computation, which we parallelize using CUDA:

```c
for(i=1;i<N-1;i++) {
    for(j=1;j<N-1;j++) {
    }
}
```

You are provided with a CUDA template (sor.cu) that (1) provides the sequential implementation; (2) times the computation; and (3) verifies that its output matches the sequential code.

Programming Assignment #3, cont.

- Your mission:
 - Write parallel CUDA code, including data allocation and copying to/from GPU
 - Measure speedup and report
 - 45 points for correct implementation
 - 5 points for performance
 - Extra credit (10 points): use shared memory and compare performance
Programming Assignment #3, cont.

• You can install CUDA on your own computer
 - http://www.nvidia.com/cudazone/
• How to compile under Linux and MacOS
 - Visual Studio (no cutil library for validation)
 - Version 3.1 in CADE labs lab1 and lab3:
 See Makefile at
 http://www.cs.utah.edu/~mhall/cs4961f10/Makefile
• Turn in
 - Handin cs4961 proj3 <file> (includes source file and explanation of results)

Outline

• Irregular parallel computation
 - Sparse matrix operations (last time) and graph algorithms (this time)
 - Dense graph algorithms (shortest path)
 - Sparse graph algorithms (shortest path and maximal independent set)
• Sources for this lecture:
 - Kathy Yelick/Jim Demmel (UC Berkeley): CS 267, Spr 07
 http://www.eecs.berkeley.edu/~yelick/cs267_sp07/lectures
 - Slides accompanying textbook "Introduction to Parallel Computing" by Grama, Gupta, Karypis and Kumar
 - http://www-users.cs.umn.edu/~karypis/parbook/

Representing Graphs

An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation.

Common Challenges in Graph Algorithms

• Localizing portions of the computation
 - How to partition the workload so that nearby nodes in the graph are mapped to the same processor?
 - How to partition the workload so that edges that represent significant communication are co-located on the same processor?
• Balancing the load
 - How to give each processor a comparable amount of work?
 - How much knowledge of the graph do we need to do this since complete traversal may not be realistic?

All of these issues must be addressed by a graph partitioning algorithm that maps individual subgraphs to individual processors.
Start with Dense Graphs

- Partitioning problem is straightforward for dense graphs
- We'll use an adjacency matrix and partition the matrix just like we would a data-parallel matrix computation
- Examples
 - Single-source shortest path and all-pairs shortest path

Single-Source shortest path (parallel)

- Each processor is assigned a portion of V, I and w
 - Which part?
- Involves a global reduction to pick minimum

Single-Source shortest path (sequential)

1. procedure Dijkstra.SINGLE-SOURCE.SP(V, I, w, s)
2. begin
3. \(F_s := \{ s \} \);
4. \text{for all } v \in (I - F_s) \text{ do}
5. \quad if (s, v) exists set \(f[v] := w(s, v) \);
6. \quad else set \(f[v] := \infty \);
7. \text{while } F_s \neq V \text{ do}
8. \quad begin
9. \quad \text{find a vertex } u \text{ such that } f[u] := \min\{ f[v] | v \in (I - F_s) \};
10. \quad F_s := F_s \cup \{ u \};
11. \quad \text{for all } v \in (I - F_s) \text{ do}
12. \quad \quad |f[v]| := \min\{|f[v]|, |f[u]| + w(u, v)|);
13. \quad endwhile
14. end Dijkstra.SINGLE-SOURCE.SP

Algorithm 10.2 Dijkstra’s sequential single-source shortest paths algorithm.

All Pairs Shortest Path

- Given a weighted graph \(G(V, E, w) \), the all-pairs shortest paths problem is to find the shortest paths between all pairs of vertices \(v_i, v_j \in V \).
- We discuss two versions
 - Extend single-source shortest path
 - Matrix-multiply based solution (sparse or dense graph)
All-Pairs Parallel based on Dijkstra's Algorithm

- **Source partitioned:**
 - Execute each of the n single-source shortest path problems on a different processor.
 - That is, using n processors, each processor Pi finds the shortest paths from vertex vi to all other vertices by executing Dijkstra's sequential single-source shortest paths algorithm.
 - Pros and Cons? Data structures?

- **Source parallel:**
 - Use a parallel formulation of the shortest path problem to increase concurrency.
 - Each of the shortest path problems is further executed in parallel. We can therefore use up to n\(^2\) processors.
 - Given p processors (p > n), each single source shortest path problem is executed by p/n processors.

Sparse Shortest Path (using adjacency list)

1. procedure JOHNSON.SINGLE.SOURCE.SP(F, E, s)
2. begin
3. Q := F;
4. for all v \in Q do
5. d[v] := \infty;
6. d[s] := 0;
7. while Q ≠ Ø do
8. begin
9. v := extract.min(Q); w(u,v) is a field of the element in v's adjacency list representing u
10. for each e, d[(u,v)] do
11. if v \in Q and d[v] + w(v, e) < d[u] then
12. d[u] := d[v] + w(v, e);
13. end while
14. end

Parallelizing Johnson's Algorithm

- Selecting vertices from the priority queue is the bottleneck.
- We can improve this by using multiple queues, one for each processor. Each processor builds its priority queue only using its own vertices.
- When process \(P_i\) extracts the vertex \(u \in V_i\), it sends a message to processes that store vertices adjacent to \(u\).
- Process \(P_j\), upon receiving this message, sets the value of \([l][v]\) stored in its priority queue to \(\min([l][v], [l][u] + w(u,v))\).
Maximal Independent Set (used in Graph Coloring)

- A set of vertices I ⊆ V is called independent if no pair of vertices in I is connected via an edge in G. An independent set is called maximal if by including any other vertex not in I, the independence property is violated.

Sequential MIS algorithm

- Simple algorithms start by MIS I to be empty, and assigning all vertices to a candidate set C.
- Vertex v from C is moved into I and all vertices adjacent to v are removed from C.
- This process is repeated until C is empty.
- This process is inherently serial.

Foundation for Parallel MIS algorithm

- Parallel MIS algorithms use randomization to gain concurrency (Luby’s algorithm for graph coloring).
- Initially, each node is in the candidate set C. Each node generates a (unique) random number and communicates it to its neighbors.
- If a node’s number exceeds that of all its neighbors, it joins set I. All of its neighbors are removed from C.
- This process continues until C is empty.
- On average, this algorithm converges after $O(\log|V|)$ such steps.

Parallel MIS Algorithm (Shared Memory)

- We use three arrays, each of length n - I, which stores nodes in MIS, C, which stores the candidate set, and R, the random numbers.
- Partition C across p processors. Each processor generates the corresponding values in the R array, and from this, computes which candidate vertices can enter MIS.
- The C array is updated by deleting all the neighbors of vertices that entered MIS.
- The performance of this algorithm is dependent on the structure of the graph.
Definition of Graph Partitioning

- Given a graph $G = (N, E, W_N, W_E)$
 - $N =$ nodes (or vertices),
 - $W_N =$ node weights
 - $E =$ edges
 - $W_E =$ edge weights

- Ex: $N = \{\text{tasks}\}$, $W_N = \{\text{task costs}\}$, edge (j, k) in E means task j sends $W_E(j, k)$ words to task k

- Choose a partition $N = N_1 \cup N_2 \cup \ldots \cup N_P$ such that
 - The sum of the node weights in each N_j is "about the same"
 - The sum of all edge weights of edges connecting all different pairs N_j and N_k is minimized

- Ex: balance the work load, while minimizing communication

- Special case of $N = N_1 \cup N_2$: Graph Bisection

Summary of Lecture

- Summary
 - Regular computations are easier to schedule, more amenable to data parallel programming models, easier to program, etc.
 - Performance of irregular computations is heavily dependent on representation of data
 - Choosing this representation may depend on knowledge of the problem, which may only be available at run time

- Next Time
 - Introduction to parallel graph algorithms
 - Minimizing bottlenecks