CS4961 Parallel Programming

Lecture 15: Locality/VTUNE Homework

Mary Hall
October 27, 2009

Administrative

- Homework assignment 3 will be posted today (after class)
- Due, Thursday, November 5 before class
 - Use the "handin" program on the CADE machines
 - Use the following command:
 "handin cs4961 hw3 <gzipped tar file>"
- Mailing list set up: cs4961@list.eng.utah.edu
- Next week we’ll start discussing final project
 - Optional CUDA or MPI programming assignment part of this

Midterm Exam

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Number of Students</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>97-100</td>
<td>1</td>
<td>A+</td>
</tr>
<tr>
<td>88-93</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>85-87</td>
<td>4</td>
<td>A-</td>
</tr>
<tr>
<td>80-83</td>
<td>7</td>
<td>B+</td>
</tr>
<tr>
<td>75-79</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>72-73</td>
<td>2</td>
<td>B-</td>
</tr>
<tr>
<td>59-61</td>
<td>2</td>
<td>C</td>
</tr>
</tbody>
</table>

Comments on Exam

- Overall, most students did well with the concepts
- Some problem-solving gaps
- Quick discussion of questions
Exam discussion

Problem 2:

a. A multiprocessor consists of 100 processors, each capable of a peak execution rate of 2 GFlops (i.e., 2 billion floating point operations per second). What is the peak performance of the system as measured in GFlops for an application where 10% of the code is sequential and 90% is parallelizable?

Key point: Speedup roughly 10, so roughly 20 GFlops

Exam discussion

b. Given the following code, which is representative of a Fast Fourier Transform:

```c
procedure FFT_like_pattern(A,n) {
  float *A;
  int n, m;
  m = log2(n);
  for (j=0; j<m; j++) {
    for (i=0; i<k; i++)
  }
}
```

Key points: main dependence on `j` loop, parallelize `k` loop

(1) What are the data dependences on loops `i` and `j`?

(2) Assume `n = 16`. Provide OpenMP or Perl-L code for the mapping to a shared-memory parallel architecture.

Exam discussion

(c) Construct a task-parallel (similar to producer-consumer) pipelined code to identify the set of prime numbers in the sequence of integers from 1 to n. A common sequential solution to this problem is the sieve of Eratosthenes. In this method, a series of all integers is generated starting from 2. The first number, 2, is prime and kept. All multiples of 2 are deleted because they cannot be prime. This process is repeated with each remaining number `j` until but not beyond sqrt(n).

A possible sequential implementation of this solution is as follows:

```c
for (i=2; i<=n; i++) {
  prime[i] = true;
  for (i=2; i<= sqrt(n); i++) 
    if (prime[i])
      for (j=i+i; j<=n; j = j+i) { // multiples of i are set to non-prime
        prime[j] = false;
    }
}
```

Key point: Task parallelism, buffer for queuing data so no data dependences, modify indexing

Homework 3

Problem 1. Assume a cache line size of 4 elements. Identify the different kinds of reuse and how many memory accesses there are in the following example, assuming (a) row-major order, (b) column-major order. Use the inner loop memory cost calculation from slides 11-13 of Lecture 15 to estimate memory accesses.

```c
for (i=0; i<n; i++)
  for (j=0; j<m; j++)
```
Homework 3, cont.

Problem 2: What code would be generated to tile the following loop nest for reuse in cache, assuming row-major order and two levels of tiling (Note: the loop order may need to be modified). Prove that tiling is safe.

\[
\text{for } (i = 0; i < n; i++) \\
\text{ for } (j = 0; j < m; j++) \\
\text{ for } (k = 0; k < l; k++) \\
\text{ } A[i][k] = A[i][k] + B[k][j]*C[k][k]
\]

Problem 3: VTUNE:

Consider the jacobi code in jacobi.c on the website. Here is the main computation:

```c
// play around with this loop nest
for (i=1; i<\text{width}-1; i++)
  for (j=1; j<\text{height}-1; j++)
```

(a) Run this code under VTUNE. Indicate event-based sampling, and collect the following events.

- (CPU_CLK_UNHALTED, MEM_LOAD_RETIRED.L1D_MISS, MEM_LOAD_RETIRED.L2_MISS)

(b) Now attempt to tile the innermost loop and repeat. Do you see an impact on cache misses and cycles.

(c) Extra credit: Tile the other loop. Now what happens.

Reuse Analysis:
Use to Estimate Cache Misses

Remember: Row-major storage for C arrays

- for \((i=0; i<\text{N}; i++)\)
- for \((j=0; j<\text{M}; j++)\)
- for \((k=0; k<\text{L}; k++)\)

<table>
<thead>
<tr>
<th>Reference Loop</th>
<th>Loop 1</th>
<th>Loop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A[i])</td>
<td>1</td>
<td>(N)</td>
</tr>
<tr>
<td>(B[j,i])</td>
<td>(M)</td>
<td>(N^M)</td>
</tr>
</tbody>
</table>

\(\text{(*) cls = Cache Line Size (in elements)}\)

Allen & Kennedy: Innermost memory cost

- Innermost memory cost: \(C_M(L_i)\)
 - assume \(L_i\) is innermost loop
 - \(L_i\) = loop variable, \(N\) = number of iterations of \(L_i\)
 - for each array reference \(r\) in loop nest:
 - \(r\) does not depend on \(L_i\): cost \((r) = 1\)
 - \(r\) such that \(L_i\) strides over a non-contiguous dimension:
 cost \((r) = N\)
 - \(r\) such that \(L_i\) strides over a contiguous dimension: cost
 \((r) = N/\text{cls}\)
 - At outer loops,
 - multiply cost \((r)\) by trip count if reference varies
 with loop index
 - Otherwise, multiply cost \((r)\) by 1 unless pushed out
 of cache
 - \(C_M(L_i)\) = sum of cost \((r)\)
Canonical Example: Selecting Loop Order

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 for (k=0; k<N; k++)
 C[i][j] = C[i][j] + A[i][k] * B[k][j];

- $C_M(i) = 2N^3 + N^2$ \[C: N^3, A: N^3, B: N^2 \]
- $C_N(j) = 2N^3/\text{cls} + N^2$ \[C: N^3/\text{cls}, A: N^2, B: N^3/\text{cls} \]
- $C_N(k) = N^2 + N^3/\text{cls} + N^3/\text{cls}, A: N^2, B: N^3/\text{cls} \]
- Ordering by innermost loop cost: j,k,i

Canonical Example: Selecting Tile Size

Choose T_i and T_k such that data footprint does not exceed cache capacity

DO $K = 1, N$ by T_k
DO $I = 1, N$ by T_i
DO $J = 1, N$
DO $KK = K, \min(KK + T_k, N)$
DO $II = I, \min(II + T_i, N)$