L18: CUDA, cont.
Memory Hierarchy and Examples

November 9, 2012

Targets of Memory Hierarchy
Optimizations

• Reduce memory latency
 - The latency of a memory access is the time (usually in cycles)
 between a memory request and its completion
 - Optimizations: Data placement in nearby portion of memory
 hierarchy (focus on registers and shared memory in this class)

• Maximize memory bandwidth
 - Bandwidth is the amount of useful data that can be retrieved
 over a time interval
 - Optimizations: Global memory coalescing, avoid shared memory
 bank conflicts

• Manage overhead
 - Cost of performing optimization (e.g., copying) should be less than
 anticipated gain
 - Requires sufficient reuse to amortize cost of copies to shared
 memory, for example

Global Memory Accesses

• Each thread issues memory accesses to data types of varying sizes, perhaps as small as 1 byte entities
• Given an address to load or store, memory returns/updates "segments" of either 32 bytes, 64 bytes or 128 bytes
• Maximizing bandwidth:
 - Operate on an entire 128 byte segment for each memory transfer

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2* (CUDA Manual 5.1.2.1)

• Start with memory request by smallest numbered thread. Find the memory segment that contains the
 address (32, 64 or 128 byte Segment, depending on data type)
• Find other active threads requesting addresses within that segment and coalesce
• Reduce transaction size if possible
• Access memory and mark threads as "inactive"
• Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms
Memory Layout of a Matrix in C

Access direction in Kernel code

- Time Period 1
 - T₁, T₂, T₃, T₄
- Time Period 2
 - T₁, T₂, T₃, T₄

Memory Layout of a Matrix in C

Access direction in Kernel code

- Time Period 1
 - T₁, T₂, T₃, T₄
- Time Period 2
 - T₁, T₂, T₃, T₄

Now Let’s Look at Shared Memory

- Common Programming Pattern (5.1.2 of CUDA manual)
 - Load data into shared memory
 - Synchronize (if necessary)
 - Operate on data in shared memory
 - Synchronize (if necessary)
 - Write intermediate results to global memory
 - Repeat until done

Familiar concept???

Mechanics of Using Shared Memory

- **__shared__** type qualifier required
- Must be allocated from global/device function, or as "extern"
- Examples:

  ```
  extern __shared__ float d_s_array();
  __global__ void compute2() {
    __shared__ float d_s_array[M];
    // a form of dynamic allocation
    // MEMSIZE is size of per-block
    // shared memory
    __host__ void outerCompute() {
      compute<<<gs,bs,MEMSIZE>>>(());
    }
    __global__ void compute() {
      d_s_array[i] = …;
      d_g_array[j] = d_s_array[j];
    }
  }
  ```
Bandwidth to Shared Memory: Parallel Memory Accesses

- Consider each thread accessing a different location in shared memory
- Bandwidth maximized if each one is able to proceed in parallel
- Hardware to support this
 - Banked memory: each bank can support an access on every memory cycle

Bank Addressing Examples

- No Bank Conflicts
 - Linear addressing
 - stride == 1

 - No Bank Conflicts
 - Random 1:1 Permutation

Bank Addressing Examples

- 2-way Bank Conflicts
 - Linear addressing
 - stride == 2

- 8-way Bank Conflicts
 - Linear addressing
 - stride == 8

How addresses map to banks on G80 (older technology)

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp
Shared memory bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts.

- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict.
 - If all threads of a half-warp access the identical address, there is no bank conflict (broadcast).

- The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank.
 - Must serialize the accesses.
 - Cost = max # of simultaneous accesses to a single bank.

Example: Matrix vector multiply

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        a[i] += c[j][i] * b[j];
    }
}
```

Remember to:
- Consider data dependences in parallelization strategy to avoid race conditions.
- Derive a partition that performs global memory coalescing.
- Exploit locality in shared memory and registers.

Let’s Take a Closer Look

- Implicitly use tiling to decompose parallel computation into independent work.
- Additional tiling is used to map portions of "b" to shared memory since it is shared across threads.
- "a" has reuse within a thread so use a register.

Resulting CUDA code (Automatically Generated by our Research Compiler)

```c
__global__ mv_GPU(float* a, float* b, float** c) {
    int bx = blockIdx.x; int tx = threadIdx.x;
    __shared__ float bcpy[32];
    double acpy = a[tx + 32 * bx];
    for (k = 0; k < 32; k++) {
        bcpy[tx] = b[32 * k + tx];
        __syncthreads();
        //this loop is actually fully unrolled
        for (j = 32 * k; j <= 32 * k + 32; j++) {
            acpy = acpy + c[j][32 * bx + tx] * bcpy[j];
        }
    }
}
```
What happens if we transpose C?

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        a[i] += c[i][j] * b[j];
    }
}
```

What else do we need to worry about?

Resulting CUDA code for Transposed Matrix Vector Multiply

```c
__global__
mv_GPU(float* a, float* b, float** c) {
    int bx = blockIdx.x; int tx = threadIdx.x;
    __shared__ float bcpy[16];
    __shared__ float P1[16][17]; // pad
double acpy = a[tx + 16 * bx];
    for (k = 0; k < 16; k++) {
        bcpy[tx] = b[16 * k + tx];
    }
    for (l = 0; l < 16; l++) {
        P1[l][tx] = c[k * bx + l][16 * bx + tx]; // copy in coalesced order
    }
    __syncthreads();
    // this loop is actually fully unrolled
    for (j = 16 * k; j < 16 * k + 16; j++) {
        acpy += P1[l][tx] * bcpy[j];
    }
    __syncthreads();
    a[tx + 32 * bx] = acpy;
}
```

Summary of Lecture

- A deeper probe of performance issues
 - Heterogeneous memory hierarchy
 - Locality and bandwidth
 - Tiling for CUDA code generation