Architecture of LISP Machines

Kshitij Sudan
March 6, 2008

A Short History Lesson ...

Alonzo Church and Stephen Kleene (1930) — A Calculus

(to cleanly define "computable functions")

John McCarthy (late 60’s)

(used A Calculus to describe the operation of a computing machine to prove theorems
about computation)

l

MIT = “Knights of the Lambda Calculus”

l

MIT Al Lab (~1970’s)

Symbolics and LMI

“Maclisp” family Machines

1975 The CONS prototype (MIT)

1977 The CADR aka MIT Lisp Machine (MIT)

1980 LM-2 Symbolics Lisp Machine, repackage CADR LMl Lisp Machine same as CADR
1982 L-Machine - Symbolics 3600, later 3640, 3670

1983 LMI Lambda Tl Explorer same as LMI Lambda
1984 G-Machine - Symbolics 3650

1986 LMI K-Machine

1987 1-Machine, Symbolics XL-400, Macivory | Tl Explorer-Il - u-Explorer

1988 Macivory Il

1989 I-Machine, Symbolics XL-1200 , Macivory |l

1990 XL1200, UX-1200

1991 Maclvory lll

1992 Virtual Lisp Machine (aka Open Genera)

I-machine compatible, running on DEC Alpha

Agenda

History of LISP machines.

Semantic Models.

von Neumann model of computation.
Programming language to m/c architecture.
Architectural challenges.

The SECD abstract machine.

A brief case study.

Semantic Models

* The semantics of a piece of notation is it’s ultimate
meaning.

Imp. for programmer-> Imp. for language designer - Imp. for architects

 Three major methods to describe and define semantics of
programming languages:
— Interpretive : meaning is expressed in terms of some simple
abstract m/c.

— Axiomatic : where rules describe data values given various
objects before and after execution of various language features.

— Denotational : syntactic pieces of program are mapped via
evaluation functions into the abstract values they denote to
humans.

von Neumann Model of Computation

Program Counter

ister File
Reg Von Neumann

Lol

<z

ALU

Memory Unit

NAS

Programming Languages to Machine

Architectures

* Interplay between h/w (m/c org.) and s/w
(compilers, interpreters, and run-time
routines) needs to be sustainable for efficient
computational structures.

* Mat
mMoca

nematical framework - Computing
els - languages - architecture - real

imp

ementations.

 Mathematical framework > Abstract m/c >

real

implementations.

A short detour ...

* Processing symbols “was” touted (circa early 90’s)

as future of computations (obviously hasn’t
happened yet!)

* For processing symbols, declarative languages
were put forth as the solution —

— function-based and logic-based languages

So what is the future?

Architectural challenges - |

Today we talk mostly about LISP machines
(functional language m/c’s).

Describe features “needed” for efficient LISP
program execution (RISC can obviously
execute LISP).

Language feature driven architectural hooks —
we talk about then briefly.

Abstract m/c = case studies

Architectural challenges — ||
(Architectural support for LISP - 1)

e Fast function calls.

— call and return instructions with short execution latencies
for dynamically bound contexts (latest active value bound
to a variable name).

— funarg problem.
e Environment maintenance.

— shallow- bound (linked-list)
— deep-bound (“oblist” == global symbol table)

e with possible caching of name-value bindings (value cache).

Architectural challenges — Il
(Architectural support for LISP - Il)

e Efficient list representation.

— improvements over two-pointer list cells
* Vector-coded (represent linear lists as vector of symbols)

e Structure-coded.
— each cell has a tag for it’s location in the list.
— associative search leads to fast access.

 Heap maintenance (a.k.a. garbage collection)
* Marking (accessible lists “marked”, others reclaimed)
* Reference count (count links to the cell, when ==0, reclaim)
* Generally mix of two schemes used.

 Dynamic type checking.

» tagged memories and special type-checking h/w

The SECD Abstract Machine

Tag

Cell Contents

Memory
PN
Available
free cells Terminal Cell
Tag = “Integer”
Tag Integer Data Value

(™

Free P
Pointer

(F Register)

Cells
currently in

use

Non-terminal Cell
Tag = “Cons Cell”

Tag Cdr Cell Addr Car Cell Addr

The SECD Abstract Machine

Basic Data Structures

Arbitrary s-expressions for computed data.
List representing programs to be executed.
Stack’s used by programs instructions.

Value Lists containing arguments for
uncompleted function applications.

Closures to represent unprocessed function
applications.

The SECD Abstract Machine

Machine Registers

* S —Register (Stack register)

— Points to a list in memory that’s treated as a
conventional stack for built-in functions (+, -, etc)

— Objects to be processed are pushed on by
cons’ing a new cell on top of the current stack and
car of this points to object’s value.

— S- register after such a push points to the new cell.

— Unlike conventional stack, this does not overwrite
original inputs.

— Cells garbage collected later.

The SECD Abstract Machine

Machine Registers

 E—Register (Environment register)

— Points to current value list of function arguments

* The list is referenced by m/c when a value for the
argument is needed.

* Listis augmented when a new environment for a
function is created.

* |t’s modified when a previously created closure is
unpacked and the pointer from the closure’s cdr
replaces the contents of E-register.

— Prior value list desighated by E is not overwritten.

The SECD Abstract Machine

Machine Registers

* C-—Register (Control register/pointer)

— Acts as the program counter and points to the memory cell
that designates through it’s car the next instruction to be
executed.

— The instructions are simple integers specifying desired
operation.

— Instructions do not have any sub-fields for registers etc. If
additional information is required, it’s accessed through
from the cells chained through the instruction cell’s cdr.

— “Increment of PC” takes place by replacement of C
registers contents by the contents of the last cell used by
the instruction.

— For return from completed applications, new function calls
and branches, the C register is replaced by a pointer
provided by some other part of the m/c.

The SECD Abstract Machine

Machine Registers

 D-register (Dump register)
— Points to a list in memory called “dump”.

— This data structure remembers the state of a function
application when a new application in that function
body is started.

— That is done by appending onto dump the 3 new cells
which record in their cars the value of registers S, E,
and C.

— When the application completes, popping the top of
the dump restores those registers. This is very similar
to call-return sequence in conventional m/c for
procedure return and activation.

The SECD Abstract Machine

Basic Instruction Set

* |nstruction can be classified into following 6 groups:
1. Push object values onto the S stack.

2. Perform built-in function applications on the S stack and
return the result to that stack.

3. Handle the if-then-else special form.

4. Build, apply and return from closures representing non-
recursive function applications.

5. Extend the above to handle recursive functions.
6. Handle I/O and machine control.

The CADR machine built at MIT (1984) closely
resembles SECD with some non-trivial differences.

Case Study

Concert machine for MultiLISP (1985)

* MultiLISP

— designed as an extension of SCHEME that permits the programmer to specify
parallelism and then supports the parallelism in h/w “efficiently”.

e SCHEME + new calls:
1. (PCALLFE1E2 ... En)

. Permit parallel evaluation of arguments, then evaluate (FE1 E2 ... En)
2. (DELAY E)
. PackageE in closure.
3. (TOUCH E)
. Do not return until E evaluated.
4. (FUTURE E)
. PackageE in a closure and permit eager evaluation
5. (REPLACE-xxx E1 E2) [xxx is either CAR or CDR]
. Replace xxx component of E1 by E2. (permits controlled modification to storage)

6. (REPLACE-xxx-EQE1 E2 E3)
. Replace xxx of E1 by E2 iff xxx = E3. (TEST_AND_SET)

Case Study

Concert machine for MultiLISP (1985)

Concert m/c at MIT — 24-way Motorola 68000
based shared memory multiprocessor.

MultiLISP - MCODE (SECD-like ISA) -
Interpreted by C interpreter (~ 3000 loc)

Common gc heap distributed among all processor
memories to hold all shared data.

MCODE programs manage data structure called
tasks that are accessed by 3pointers: program
pointer, stack pointer, and environment pointer.

Case Study

Concert machine for MultiLISP (1985)

e FUTURE call creates a new task and leaves it
accessible for any free processor. It’s environment
is that of it’s parent expression at it’s time
creation.

* Task queue used to maintain schedulable tasks
and unfair scheduling policy used to prevent task
explosion.

 GCuses Banker’s algorithm and spread over all
processors with careful synchronization to avoid
multiple processors trying to evacuate same
object at the same time.

Questions?

Thanks for your patience ...

