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A Short History Lesson …

Alonzo Church and Stephen Kleene (1930) – λ Calculus
( to cleanly define "computable functions" )

John McCarthy (late 60’s)
(used λ Calculus to describe the operation of a computing machine to prove theorems 

about computation)

MIT → “Knights of the Lambda Calculus”

MIT AI Lab (~1970’s)

Symbolics and LMI



“MacLisp” family Machines

1975 The CONS prototype  (MIT)

1977 The CADR aka MIT Lisp Machine  (MIT)

1980 LM-2 Symbolics Lisp Machine, repackage CADR LMI Lisp Machine same as CADR

1982 L-Machine - Symbolics 3600, later 3640, 3670

1983 LMI Lambda TI Explorer same as LMI Lambda

1984 G-Machine - Symbolics 3650

1986 LMI K-Machine

1987 I-Machine, Symbolics XL-400, Macivory I TI Explorer-II - u-Explorer

1988 Macivory II

1989 I-Machine, Symbolics XL-1200 , Macivory III 

1990 XL1200, UX-1200

1991 MacIvory III

1992 Virtual Lisp Machine (aka Open Genera) 
I-machine compatible, running on DEC Alpha



Agenda

• History of LISP machines.

• Semantic Models.

• von Neumann model of computation.

• Programming language to m/c architecture.

• Architectural challenges.

• The SECD abstract machine.

• A brief case study.



Semantic Models

• The semantics of a piece of notation is it’s ultimate 
meaning. 

Imp. for programmer→ Imp. for language designer → Imp. for architects

• Three major methods to describe and define semantics of 
programming languages:
– Interpretive : meaning is expressed in terms of some simple 

abstract m/c.
– Axiomatic : where rules describe data values given various 

objects before and after execution of various language features.
– Denotational : syntactic pieces of program are mapped via 

evaluation functions into the abstract values they denote to 
humans.



von Neumann Model of Computation



Programming Languages to Machine 
Architectures

• Interplay between h/w (m/c org.) and s/w 
(compilers, interpreters, and run-time 
routines) needs to be sustainable for efficient 
computational structures.

• Mathematical framework → Computing 
models → languages → architecture → real 
implementations.

• Mathematical framework → Abstract m/c → 
real implementations.



A short detour …

• Processing symbols “was” touted (circa early 90’s) 

as future of computations (obviously hasn’t 

happened yet!)

• For processing  symbols, declarative languages 
were put forth as the solution –

– function-based and logic-based languages

So what is the future?



Architectural challenges - I

• Today we talk mostly about LISP machines 
(functional language m/c’s).

• Describe features “needed” for efficient LISP 
program execution (RISC can obviously 
execute LISP).

• Language feature driven architectural hooks –
we talk about then briefly.

• Abstract m/c → case studies



Architectural challenges – II
(Architectural support for LISP - I)

• Fast function calls.

– call and return instructions with short execution latencies 
for dynamically bound contexts (latest active value bound 
to a variable name).

– funarg problem.

• Environment maintenance.

– shallow- bound (linked-list)

– deep-bound (“oblist” == global symbol table)
• with possible caching of name-value bindings (value cache).



Architectural challenges – III
(Architectural support for LISP - II)

• Efficient list representation.
– improvements over two-pointer list cells

• Vector-coded (represent linear lists as vector of symbols)
• Structure-coded .

– each cell has a tag for it’s location in the list.
– associative search leads to fast access.

• Heap maintenance (a.k.a. garbage collection)
• Marking (accessible lists “marked”, others reclaimed)
• Reference count (count links to the cell, when ==0, reclaim)
• Generally mix of two schemes used.

• Dynamic type checking.
• tagged memories and special type-checking h/w



The SECD Abstract Machine
Memory



The SECD Abstract Machine
Basic Data Structures

• Arbitrary s-expressions for computed data.

• List representing programs to be executed.

• Stack’s used by programs instructions.

• Value Lists containing arguments for 
uncompleted function applications.

• Closures to represent unprocessed function 
applications.



The SECD Abstract Machine
Machine Registers

• S – Register (Stack register)
– Points to a list in memory that’s treated as a 

conventional stack for built-in functions (+, -, etc)

– Objects to be processed are pushed on by 
cons’ing a new cell on top of the current stack and 
car of this points to object’s value.

– S- register after such a push points to the new cell.

– Unlike conventional stack, this does not overwrite 
original inputs.

– Cells garbage collected later.



The SECD Abstract Machine
Machine Registers

• E – Register (Environment register)

– Points to current value list of function arguments

• The list is referenced by m/c when a value for the 
argument is needed.

• List is augmented when a new environment for a 
function is created. 

• It’s modified when a previously created closure is 
unpacked and the pointer from the closure’s cdr
replaces the contents of E-register.

– Prior value list designated by E is not overwritten.



The SECD Abstract Machine
Machine Registers

• C – Register (Control register/pointer)
– Acts as the program counter and points to the memory cell 

that designates through it’s car the next instruction to be 
executed.

– The instructions are simple integers specifying desired 
operation.

– Instructions do not have any sub-fields for registers etc. If 
additional information is required, it’s accessed through 
from the cells chained through the instruction cell’s cdr.

– “Increment of PC” takes place by replacement of C 
registers contents by the contents of the last cell used by 
the instruction.

– For return from completed applications, new function calls 
and branches, the C register is replaced by a pointer 
provided by some other part of the m/c.



The SECD Abstract Machine
Machine Registers

• D – register (Dump register)
– Points to a list in memory called “dump”.
– This data structure remembers the state of a function 

application when a new application in that function 
body is started.

– That is done by appending onto dump the 3 new cells 
which record in their cars the value of registers S, E, 
and C.

– When the application completes, popping the top of 
the dump restores those registers. This is very similar 
to call-return sequence in conventional m/c for 
procedure return and activation.



The SECD Abstract Machine
Basic Instruction Set

• Instruction can be classified into following 6 groups:
1. Push object values onto the S stack.
2. Perform built-in function applications on the S stack and 

return the result to that stack.
3. Handle the if-then-else special form.
4. Build, apply and return from closures representing non-

recursive function applications.
5. Extend the above to handle recursive functions.
6. Handle I/O and machine control.

The CADR machine built at MIT (1984) closely 
resembles SECD with some non-trivial differences.



Case Study
Concert machine for MultiLISP (1985)

• MultiLISP
– designed as an extension of SCHEME that permits the programmer to specify 

parallelism and then supports the parallelism in h/w “efficiently”.

• SCHEME + new calls:
1. (PCALL F E1 E2 … En)

• Permit parallel evaluation of arguments, then evaluate (F E1 E2 … En)

2. (DELAY E)
• Package E in closure.

3. (TOUCH E)
• Do not return until E evaluated.

4. (FUTURE E)
• Package E in a closure and permit eager evaluation

5. (REPLACE-xxx E1 E2) [xxx is either CAR or CDR ]
• Replace xxx component of E1 by E2. (permits controlled modification to storage)

6. (REPLACE-xxx-EQ E1 E2 E3)
• Replace xxx of E1 by E2 iff xxx = E3. (TEST_AND_SET)



Case Study
Concert machine for MultiLISP (1985)

• Concert m/c at MIT – 24-way Motorola 68000 
based shared memory multiprocessor.

• MultiLISP → MCODE (SECD-like ISA) → 
Interpreted by C interpreter (~ 3000 loc)

• Common gc heap distributed among all processor 
memories to hold all shared data.

• MCODE programs manage data structure called 
tasks that are accessed by 3pointers: program 
pointer, stack pointer, and environment pointer.



Case Study
Concert machine for MultiLISP (1985)

• FUTURE call creates a new task and leaves it 
accessible for any free processor. It’s environment 
is that of it’s parent expression at it’s time 
creation.

• Task queue used to maintain schedulable tasks 
and unfair scheduling policy used to prevent task 
explosion.

• GC uses Banker’s algorithm and spread over all 
processors with careful synchronization to avoid 
multiple processors trying to evacuate same 
object at the same time.



Questions?

Thanks for your patience …


