
CS 4400 Fall 2017
Final Exam – Practice

Name: ____________________________

Instructions You will have eighty minutes to complete the actual open-book, open-
note exam. Electronic devices will be allowed only to consult notes or books from
local storage; network use will be prohibited. The actual exam will be shorter than this
practice exam.

The first three questions refer to the code template

long f(long x, long y) {
return;

}

and the code fragments

1. x*(2+y)
2. x+8*y
3. ((long *)x)[y]
4. *(long *)x = y
6. x == y

1. Which of the above code fragments most likely appears in place of if the
generated machine code includes the following instruction?

leaq (%rdi, %rsi, 8), %rax

2. Which of the above code fragments most likely appears in place of if the
generated machine code includes the following instruction?

movq (%rdi, %rsi, 8), %rax

3. Which of the above code fragments most likely appears in place of if the
generated machine code includes the following sequence?

cmpq %rdi, %rsi
sete %al
movzbq %rax

1

The next four questions refer to the following assembly sequence:

leal (, %eax, 4), %ebx
shrl $0x2, %ebx
subl %ebx, %eax
cmpl $0x0, %eax
jg .L1
andl $0x7FFFFFFF, %eax

.L1:
shrl $29, %eax
ret

4. If %eax starts as 0, what is the ending value of register %eax?

5. If %eax starts as -1, what is the ending value of register %eax?

6. If %eax starts as 0x4FFFFFFF, what is the ending value of register %eax?

7. If %eax starts as unknown, what are all the possible ending values of %eax?

2

8. Given that

int sum_element(int c,
long mat1[][M],
long mat2[][N]) {

int k;
long sum = 0;
for (k = 0; k < c; k++)

sum += mat1[k][c] - mat2[k][c];
return sum;

}

compiles as

testl %edi, %edi
jle zero
movslq %edi, %rax
subl $1, %edi
leaq 0(,%rax,8), %r8
leaq (%rax,%rdi,4), %rax
leaq (%rsi,%r8), %rcx
addq %r8, %rdx
leaq 32(%rsi,%rax,8), %rsi
xorl %eax, %eax

loop:
addq (%rcx), %rax
addq $32, %rcx
subq (%rdx), %rax
addq $40, %rdx
cmpq %rsi, %rcx
jne loop
ret

zero:
xorl %eax, %eax
ret

then what are the values of the constants M and N among the following possibilities?

• M = 10 and N = 6

• M = 12 and N = 2

• M = 3 and N = 5

• M = 4 and N = 5

• M = 5 and N = 12

• M = 8 and N = 17

To enable partial credit, show your reasoning for how the assembly code corresponds
to elements of the C code.

3

The next two questions refer to the iterate function defined as

double iterate(double x, double y, double z, int steps) {
int i;
for (i = 0; i < steps; i++) {

z = x * y;
if (!(i & 0x1))

x = y + z;
else

y = x + z;
}
return z;

}

9. Which of the following correctly represents the dependency graph of iterate over
six iterations, where each column corresponds to a single iteration?

•
�����

����

����

�����

����

����

�����

����

����

�����

����

����

�����

����

����

�����

����

����

•
�����

����

����

�����

����

����

�����

����

����

�����

����

����

�����

����

����

�����

����

����

•
�����

����

����

�����

����

����

�����

����

����

�����

����

����

�����

����

����

�����

����

����

10. Based on the dependency graph, how many cycles will iterate take (expressed
as a multiple of steps)?

4

The following four questions refer to the following declarations:

typedef struct jumble {
struct {

int i;
} r;
double d;
char c;
union {

int i;
char *s;

} u;
short s;

} jumble;

jumble ja[7][5];

For the questions, assume that ja starts at address 0x10000.

11. What is sizeof(jumble)?

12. What is the address of ja[0][2].d?

13. What is the address of ja[4][2].u.s?

14. What is the address of ja[4][2].s?

5

The next two questions refer to the following declarations and function:

typedef struct {
int a[2];

} pair;

pair s[32][32];

int sum(int how_many) {
int i, j, k, a = 0;

for (i = 0; i < 32; i++)
for (j = 0; j < 32; j++) {

for (k = 0; k < how_many; k++) {
a += s[i][j].a[k];

}
}

return a;
}

For each question below, assume a 1kB direct-mapped cache that uses 16-byte blocks,
the cache is initially empty, and local variables are in registers. Also assume that the
array p is at the address 0x10000 in memory.

15. For each of first five memory accesses via p in sum(1), what is the accessed
element, what is the accessed address, and is the access a cache hit or miss?

����������������� �������������� �����������

16. What is the overall expected cache-miss rate of sum(1)?

6

17. For each of first five memory accesses via p in sum(2), what is the accessed
element, what is the accessed address, and is the access a cache hit or miss?

����������������� �������������� �����������

18. What is the overall expected cache-miss rate of sum(2)?

7

19. What are all of the possible outputs of the following program?

Assume that the program runs on Linux, where the child process created by fork does
not include all the threads of the parent process. The child process includes only the
thread that called fork.

In case you don’t list all of the possible outputs correctly, to improve opportunities
for partial credit, show how you arrived at your answer by sketching one or more
process/thread graphs.

#include "csapp.h"

static sem_t done;

static void *go(void *p) {
pid_t pid = Fork();
if (pid == 0) {

Write(1, "c", 1);
V(&done);
exit(0);

} else {
Write(1, "p", 1);
Waitpid(pid, NULL, 0);
V(&done);
return NULL;

}
}

int main() {
pid_t pid;
pthread_t th1, th2;

Sem_init(&done, 0, 0);

Write(1, "+", 1);
Pthread_create(&th1, NULL, go, NULL);
Pthread_create(&th2, NULL, go, NULL);

P(&done);
P(&done);
Write(1, "-", 1);

return 0;
}

8

20. For this question, a word is defined to be 16 bytes, each cell in a diagram represents
a word, and an underlined number N is a shorthand for N times 16.

An allocator produces word-aligned payload pointers, uses a word-sized header and
footer for each allocated block, uses a 2-word prolog block and a 1-word terminator
block, coalesces unallocated blocks, uses an explicit free list as a singly-linked and
NULL-terminated list starting from fp and using the first word of a block payload for
a “next” pointer, adds free blocks to the start of the free list, does not split a block
to create an unallocated block with a zero-sized payload, uses a best-fit allocation
strategy, and is confined to 16 words of memory that is initially filled with 0s. Show a
header in a diagram as a value for the block size over a 0 or 1 to indicate the block’s
allocation status; draw a footer as just the block size. Show the free list as either equal
to NULL or as a chain of pointers.

The left-hand column below contains a sequence of malloc and free calls that are
handled by the allocator. Fill in the left-hand column by showing relevant header and
footer values and the free list just after each step on the left. The first row of the left
column is blank so that you can show the initial state of memory in the first row of the
right column.

fp=

p1 = malloc(2)
fp=

p2 = malloc(2)
fp=

p3 = malloc(2)
fp=

p4 = malloc(2)
fp=

free(p1)
fp=

free(p3)
fp=

p5 = malloc(2)
fp=

9

The last page contains a server implementation that implements a vote-counting ser-
vice, except that many parts of the program have be deleted and replaced with blanks.
Your task is to fill in each blank with a number that corresponds to one of the following
program fragments. Each fragment can be used multiple times, and not all fragments
need to be used, but you can only fill in blanks with these fragments. If you use a frag-
ment that itself has blanks, then those blanks must be filled in, too; blanks in unused
fragments do not need to be filled in.

The server listens for both TCP connections and UDP connections at a given port.
Each message sent to the sever by UDP is received as a vote, which is recorded by
incrementing a counter for the message string as stored in a dictionary. For example, a
client could send the message apple to increasethe apple count. For each connection
made to the server via TCP, the server sends back vote results so far. Vote results are
reported as an int for the number of voted-on strings, then, for each voted-on string:
each string’s length as an int, its content as bytes, and its vote count as an int.

The server must listen for UDP and TCP connections currently. Since each UDP mes-
sage can be handled immediately, there’s no need to have multiple messages processed
concurrently to each other. Each TCP connection may take a while to receive all the
votes, however, so the server is meant to support multiple TCP connections currently.
Finally, each TCP connection should be sent a snapshot of vote tallies at the time of
the connection, and new votes via UDP should be allowed meanwhile.

The server uses a dictionary library with the following property: the dictionary makes
it own copy of keys, but when a value is installed into the dictionary with dictio-
nary_set, the dictionary takes ownership of the value and is responsible for deallo-
cating it when the value is replaced (or when the dictionary is destroyed, but that never
happens in this server). A client does not take ownership of a value that is extracted
from the dictionary with dictionary_get; that value can be deallocated if it is mean-
while replaced.

1. Close(s);

2. ls = Open_listenfd(portno);

3. struct sockaddr_storage addr;
unsigned int len = sizeof(addr);
s = Accept(ls, (struct sockaddr *)&addr, &len);

4. s = Socket(addrs->ai_family, addrs->ai_socktype, addrs->ai_protocol);

5. amt = Sendto(s, buffer, MAXBUF-1, 0,
(struct sockaddr *)&addr, &len);

6. char buffer[MAXBUF];
size_t amt;
amt = Recv(s, buffer, MAXBUF-1, 0);
buffer[amt] = 0;

10

7. free(new_p);

8. free(p);

9. static int make_socket(char *portno) {
int s;
struct addrinfo hints, *addrs;

memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
Getaddrinfo("localhost", portno, &hints, &addrs);

____________a

Connet(s, addrs->ai_addr, addrs->ai_addrlen);
Freeaddrinfo(addrs);

return s;
}

10. static int make_socket(char *portno) {
int s;
struct addrinfo hints, *addrs;

memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE;
Getaddrinfo(NULL, portno, &hints, &addrs);

____________b

Bind(s, addrs->ai_addr, addrs->ai_addrlen);
Freeaddrinfo(addrs);

return s;
}

11. s

12. ls

13. Sem_init(&db_lock, 0, 1);

14. static void sigchld_handler(int sig) {
while (waitpid(-1, NULL, WNOHANG) < 0)
;

}

11

15. Signal(SIGCHLD, sigchld_handler);

16. V(&db_lock);

17. P(&db_lock);

18. Waitpid(-1, NULL, 0);

19. exit(0);

20. receive_votes

21. serve_counts

22. static void write_entry(dictionary_t *db, int i, int s) {
const char *key = dictionary_key(db, i);
int len = strlen(key);
int votes = *(int *)dictionary_value(db, i);
Rio_writen(s, &len, sizeof(len));
Rio_writen(s, (void *)key, len);
Rio_writen(s, &votes, sizeof(votes));

}

23. /* A million threads isn't cool... */

12

21. Fill in the blanks with numbers for fragments on the previous pages:

#include "csapp.h"
#include "dictionary.h"

static dictionary_t *db;
static sem_t db_lock;

____________c
____________d
____________e

static void receive_votes(char *portno) {
int s = make_socket(portno);
while (1) {

int *p, *new_p;
____________f
new_p = malloc(sizeof(int));
*new_p = 1;
____________g
p = dictionary_get(db, buffer);
if (p) *new_p += *p;
dictionary_set(db, buffer, new_p);
____________h

}
}

static void *serve_counts(void *portno) {
int ls, s;
____________i
while (1) {

____________j
____________k
if (Fork() == 0) {

int i, count = dictionary_count(db);
Rio_writen(s, &count, sizeof(count));
for (i = 0; i < count; i++)

write_entry(db, i, s);
____________l

}
____________m
Close(s);

}
}

int main(int argc, char **argv) {
pthread_t th;
if (argc != 2) app_error("need <port>");
db = make_dictionary(COMPARE_CASE_SENS, free);
Sem_init(&db_lock, 0, 1);
____________n
Pthread_create(&th, NULL, ____________o, argv[1]);
Pthread_detach(th);
____________p(argv[1]);
return 0;

}

13

Answers

1. x+8*y

2. ((long *)x)[y]

3. x == y

4. 0

5. 2

6. 2

7. 0 and 2

8. M = 4 and N = 5
testl %edi, %edi # check whether c is 0
jle zero # if c is zero, just return 0
movslq %edi, %rax # copy c to rax
subl $1, %edi # rdi = c-1
leaq 0(,%rax,8), %r8 # r8 = c*sizeof(long)
leaq (%rax,%rdi,4), %rax # rax = 5*(c-1)
leaq (%rsi,%r8), %rcx # rcx = matrix1 + c*sizeof(long)
addq %r8, %rdx # rdx = matrix2 + c*sizeof(long)
leaq 32(%rsi,%rax,8), %rsi # rsi = matrix1 + 5*(c-1)*8+32; used as end condition
xorl %eax, %eax # sum = 0

loop:
addq (%rcx), %rax # sum += rcx[0]
addq $32, %rcx # rcx += 4 * sizeof(long) => M = 4
subq (%rdx), %rax # sum -= rdx[0]
addq $40, %rdx # rdx += 5 * sizeof(long) => N = 5
cmpq %rsi, %rcx # rcx == matrix1+c*sizeof(long)?
jne loop # if we haven't reached last row....
ret

zero:
xorl %eax, %eax
ret

9. The third one

10. 8, since there’s a path that goes through both FP* and FP+ at each iteration.

11. 40

typedef struct jumble {
struct {

int i; // size 4, alignment 4 => offset 0
} r; // also size 4, offset 0
double d; // size 8, alignment 8 => offset 8
char c; // size 1, alignment 1 => offset 16
union {

int i; // size 4, alignment 2 => offset 20... but 24 for s

14

char *s; // size 8, alignment 8 => offset 24
} u; // so, size 8, offset 24
short s; // size 2, alignment 2 => offset 32

} jumble; // size >= 34, alignment 8 => size 40

jumble ja[7][5]; // each row is 40*5 bytes

12. 0x10000 + 80 + 8 = 0x10058

13. 0x10000 + 40ˆ5ˆ4 + 80 + 24 = 0x10388

14. 0x10000 + 40ˆ5ˆ4 + 80 + 32 = 0x10390

15.
����������������� �������������� �����������

s[0][0].a[0] 0x10000 miss

s[0][1].a[0] 0x10008 hit

s[0][2].a[0] 0x10010 miss

s[0][3].a[0] 0x10018 hit

s[0][4].a[0] 0x10020 miss

16. 50%

17.
����������������� �������������� �����������

s[0][0].a[0] 0x10000 miss

s[0][0].a[1] 0x10004 hit

s[0][1].a[0] 0x10008 hit

s[0][1].a[1] 0x1000c hit

s[0][2].a[0] 0x10010 miss

18. 25%

19. Six possible outputs: +ppcc-, +pcpc-, +ccpp-, +pccp-, +cpcp-, and +ccpp-.
The outputs reflect that + must be first, - must be last, and the two cs and two ps can
be in any order.A possible progress/thread graph is

main wr +

wr c V(&done_copy) exit

fork wr p waitpid V(&done)

pthr_creat

wr c V(&done_copy) exit

fork wr p waitpid V(&done)

pthr_creat P(&done) P(&done) wr -

15

It’s also possible for the Vs and Ps to pair up in the other way, but that makes no
difference to the output. The V(&done_copy) nodes reflect that the child processes
perform a semaphore post on done, but it has no effect since the semaphore is not
shared with the parent process.

20.

fp=

 2
1
2 19

0
19 0

1

p1 = malloc(2)
fp=

 2
1
2 4

1
4 15

0
15 0

1

p2 = malloc(2)
fp=

 2
1
2 4

1
4 4

1
4 11

0
11 0

1

p3 = malloc(2)
fp=

 2
1
2 4

1
4 4

1
4 4

1
4 7

0
7 0

1

p4 = malloc(2)
fp=

 2
1
2 4

1
4 4

1
4 4

1
4 4

1
4 3

0
3 0

1

free(p1)
fp=

 2
1
2 4

0
4 4

1
4 4

1
4 4

1
4 3

0
3 0

1

free(p3)
fp=

 2
1
2 4

0
4 4

1
4 4

0
4 4

1
4 3

0
3 0

1

p5 = malloc(2)
fp=

 2
1
2 4

1
4 4

1
4 4

0
4 4

1
4 3

0
3 0

1

In the last step, allocating the middle free block would also be valid.

21.
b = 4
c = 14
d = 10
e = 22
f = 6
g = 17
h = 16
i = 2
j = 3
k = 17
l = 19
m= 16
n = 15
o = 21
p = 20

16

