
Scheme vs. Algebra

In Scheme, we have a specific order for evaluating sub-expressions:

(+ (* 4 3) (- 8 7)) ⇒ (+ 12 (- 8 7)) ⇒ (+ 12 1)

In Algebra, order doesn't matter:

(4·3)+(8-7) ⇒ 12+(8-7) ⇒ 12+1

or

(4·3)+(8-7) ⇒ (4·3)+1 ⇒ 12+1

1

Algebraic Shortcuts

In Algebra, if we see

f(x, y) = x

g(z) = ...

f(17, g(g(g(g(g(18))))))

then we can go straight to

17

because the result of all the g calls will not be used

But why would a programmer write something like that?

2-3

Avoiding Unnecessary Work

; layout-text : string w h -> pict
(define (layout-text txt w h)
 (local [(define lines

 ; lots of work to flow a paragraph
 ...)]

 (make-pict w
h

 (lambda (dc x y)
 ; draw paragraph lines
 ...))))

...
(define speech (layout-text "Four score..."

800
 600))

...
(pict-width speech)

4

Avoiding Unnecessary Work

; read-all-chars : file -> list-of-char
(define (read-all-chars f)
 (if (at-eof? f)

empty
 (cons (read-char f) (read-all-chars f))))

...
(define content (read-all-chars (open-file user-file)))
(if (equal? (first content) #\#)

(process-file (rest content))
 (error 'parser "not a valid file"))

5

Recursive Definitions

; numbers-from : int -> list-of-int
(define (numbers-from n)
 (cons n (numbers-from (add1 n))))
...
(define nonneg (numbers-from 0))
(list-ref nonneg 10675)

6

Lazy Evaluation

Languages like Scheme, Java, and C are called eager

• An expression is evaluated when it is encountered

Languages that avoid unnecessary work are called lazy

• An expression is evaluated only if its result is needed

7

Lazy Evaluation in DrScheme

plai-lazy.plt adds a PLAI Lazy language to DrScheme

In the Choose Language.. dialog, click Show Details and then
Syntactic test suite coverage

(Works for both eager and lazy languages)

• Green means evaluated at least once
• Red means not yet evaluated
• Normal coloring is the same as all green

8

Interepreter in Lazy Scheme

Doesn't work because result of set-box! is never used:

(define (interp a-rcfae sc)
 (type-case RCFAE a-rcfae
 ...
 [rec (bound-id named-expr body-expr)

 (local [(define value-holder (box (numV 42)))
(define new-sc (aRecSub bound-id

value-holder
 sc))]

 (begin
 (set-box! value-holder (interp named-expr new-sc))
 (interp body-expr new-sc)))]))

9

Interepreter in Lazy Scheme

Working implementation is actually simpler:

(define (interp a-rcfae sc)
 (type-case RCFAE a-rcfae
 ...
 [rec (bound-id named-expr body-expr)
 (local [(define new-sc (aSub bound-id

(interp named-expr new-sc)
 sc))]

 (interp body-expr new-sc))]))

10

