
CS 3520
Programming Language Concepts

Fall 2005

Instructor: Matthew Flatt

1

Course Details

http://www.cs.utah.edu/classes/cs3520/

2

Programming Language Concepts

This course teaches concepts in two ways:

By implementing interpreters

new concept ⇒ new interpreter

By using Scheme and variants

new concept ⇒ new variant of Scheme

we don't assume that you already know Scheme

3-5

Interpreters

An interpreter takes a program and produces a result

Examples:

DrScheme
x86 processor
desktop calculator
bash

Algebra student

A compiler takes a program and produces another program

In the terminology of programming languages, someone who
translates Chinese to English is a compiler!

So, what's a program?6-8

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>) = <expr>
<expr> ::= (<expr> + <expr>)

| (<expr> - <expr>)
| <id>(<expr>)
| <id>
| <num>

<id> ::= a variable name: f, x, y, z, ...
<num> ::= a number: 1, 42, 17, ...

Each meta-variable, such as <prog>, defines a set

9-10

Using a BNF Grammar

<id> ::= a variable name: f, x, y, z, ...
<num> ::= a number: 1, 42, 17, ...

The set <id> is the set of all variable names

The set <num> is the set of all numbers

To make an example member of <num>, simply pick an element from
the set

1 ∈ <num>

198 ∈ <num>

11-13

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
| (<expr> - <expr>)
| <id>(<expr>)
| <id>
| <num>

The set <expr> is defined in terms of other sets

14

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
| (<expr> - <expr>)
| <id>(<expr>)
| <id>
| <num>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

combine the examples with literal text

15

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
| (<expr> - <expr>)
| <id>(<expr>)
| <id>
| <num>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

7 ∈ <num>

combine the examples with literal text

7 ∈ <expr>

16-18

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
| (<expr> - <expr>)
| <id>(<expr>)
| <id>
| <num>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

f ∈ <id> 7 ∈ <expr>

combine the examples with literal text

f(7) ∈ <expr>

19-22

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
| (<expr> - <expr>)
| <id>(<expr>)
| <id>
| <num>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

f ∈ <id> f(7) ∈ <expr>

combine the examples with literal text

f(f(7)) ∈ <expr>

23-24

Using a BNF Grammar

<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>) = <expr>

f(x) = (x + 1) ∈ <defn>

• To make a <prog> pick some number of <defn>s

(x + y) ∈ <prog>

f(x) = (x + 1)
g(y) = f((y - 2))
g(7)

 ∈ <prog>

25-26

Programming Language

A programming language is defined by

• a grammar for programs

• rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of evaluation
steps:

(2 + (7 - 4)) → (2 + 3) → 5

27-28

Programming Language

A programming language is defined by

• a grammar for programs

• rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of evaluation
steps:

f(x) = (x + 1)
f(10) → (10 + 1) → 11

29

Evaluation

• Evaluation → is defined by a set of pattern-matching rules:

(2 + (7 - 4)) → (2 + 3)

due to the pattern rule

... (7 - 4) ... → ... 3 ...

30

Evaluation

• Evaluation → is defined by a set of pattern-matching rules:

f(x) = (x + 1)
f(10) → (10 + 1)

due to the pattern rule

... <id>1(<id>2) = <expr>1 ...

... <id>1(<expr>2) ... → ... <expr>3 ...

where <expr>3 is <expr>1 with <id>2 replaced by <expr>2

31

Pattern-Matching Rules for Evaluation

• Rule 1

... <id>1(<id>2) = <expr>1 ...

... <id>1(<expr>2) ... → ... <expr>3 ...

where <expr>3 is <expr>1 with <id>2 replaced by <expr>2

• Rules 2 - ∞

... (0 + 0) ... → ... 0 (0 - 0) ... → ... 0 ...

... (1 + 0) ... → ... 1 (1 - 0) ... → ... 1 ...

... (0 + 1) ... → ... 1 (0 - 1) ... → ... -1 ...

... (2 + 0) ... → ... 2 (2 - 0) ... → ... 2 ...
etc. etc.

When the interpreter is a program instead of an Algebra
student, the rules look a little different 32-34

HW 1

On the course web page:

Write an interpreter for a small language of string manipulations

Assignment is due Monday

Your code may be featured in class on Monday

35

