
Classes

Object

Doorc

enter

canOpen

canPass

LockedDoorc

canOpen

ShortDoorc

canPass

RedLockedDoorc

color

Each node is a class extension

Each chain of nodes to the root is a class

Mixins

Object

Doorc

LockedDoorc ShortDoorc

⇒

Object

Doorc

LockedDoori

Lockedm

Doori

ShortDoori

Shortm

Doori

A mixin is a class extension without a superclass

Mixins are more reuseable than class extensions

Mixins preserve the single-inheritance programming model

Motivating Example: Door Classes in a Maze Adventure Game

Locked Door Magic Door Short Door Locked Short Door

Object

Doorc

enter

canOpen

canPass

LockedDoorc

canOpen

ShortDoorc

canPass

Combining Locked and Short Doors

Locked Door

+

Short Door

=

Locked Short Door

Doorc

LockedDoorc ShortDoorc

?

Mixins Allow Combinations

Classes

Object

Doorc

LockedDoorc ShortDoorc

Mixins Allow Combinations

Classes

Object

Doorc

LockedDoorc ShortDoorc

Mixins

Object

Doorc

Doori

Lockedm

canOpen

Doori

Doori

Shortm

canPass

Doori

LockedShortDoorc

Doori

Lockedm

canOpen

Shortm

canPass

Doori

Object

Doorc

Doori

Mixins Allow Combinations

Classes

class LockedDoorc extends Doorc {
 boolean canOpen(Personc p) {

 }
}

class ShortDoorc extends Doorc {
 boolean canPass(Personc p) {

 }
}

/∗ LockedShortDoorc? ∗/

Mixins

mixin Lockedm extends Doori {
 boolean canOpen(Personc p) {

 }
}

mixin Shortm extends Doori {
 boolean canPass(Personc p) {

 }
}

class LockedDoorc = Lockedm(Doorc);
class ShortDoorc = Shortm(Doorc);
class LockedShortDoorc
 = Lockedm(Shortm(Doorc));

Mixins Replace Classes

Empty is a
special built-in
interface

Doori

Object

Doorc
⇒

Doori

Doorm

Empty

Mixin
applications can
be replaced with
mixin
compositions

Doori

LockedDoorc

Lockedm

Object

Doorc

⇒

LockedDoorm

Doori

Lockedm

Doorm

Empty

Locked and Magic Doors are Secure Doors

∅

Secure Door

+

Locked Needs Key

=

Locked Door

∅

Secure Door

+

Magic Needs Spell

=

Magic Door

Locked and Magic Door Mixins as Compositions

Doori, Securei

Securem

needed

canOpen

Doori

Doori, Securei

NeedsKeym

needed

Securei

Doori, Securei

NeedsSpellm

needed

Securei

Doori, Securei

Lockedm

NeedsKeym

needed

Securem

needed

canOpen

Securei

Doori

Doori, Securei

Magicm

NeedsSpellm

needed

Securem

needed

canOpen

Securei

Doori

Locked Magic Doors

LockedMagicm = Lockedm compose Magicm

NeedsKeym

needed

Securei

Securem

needed

canOpen

Doori

NeedsSpellm

needed

Securei

Securem

needed

canOpen

Lockedm
Magicm

LockedMagicm

Doori does not contain needed, so there are two distinct needed methods in
LockedMagicm

Type Checking for Classes

Placei Barrieri

Doori

Interfaces

Object

Doorc

enter

canOpen

canPass

LockedDoorc

canOpen

ShortDoorc

canPass

Classes

interface Doori extends Placei, Barrieri
class Doorc extends Object implements Doori {
 Roomc enter(Personc p) { }
 boolean canOpen(Personc p) { }
 boolean canPass(Personc p) { } }
class LockedDoorc extends Doorc
class ShortDoorc extends Doorc

Evaluation for Classes

〈

player:

Personc

room:

Roomc

door:

LockedDoorc

, door.enter(player) 〉

→ 〈

player:

Personc

room:

Roomc

door:

LockedDoorc

, room 〉

Type Checking for Mixins

Lockedm = Securem compose NeedsKeym

Magicm = Securem compose NeedsSpellm

Placei Barrieri

Doori

Interfaces

Doorm NeedsKeym Securem NeedsSpellm

Lockedm Magicm

LockedDoorm LockedMagicm

Mixins

composite mixin ⇒ linear chain of atomic mixins

parents = supertypes, parents ≠ subsumable types

‘‘Viewable As’’ Relation

X subsumes Y ⇔ X is viewable as Y

NeedsKeym

needed

Securei

Securem

needed

canOpen

Doori

NeedsSpellm

needed

Securei

Securem

needed

canOpen

Lockedm
Magicm

LockedMagicm

LockedMagicm is viewable as Lockedm and Magicm

Lockedm and Magicm are viewable as Securem

LockedMagicm is not viewable as Securem because Securem is ambiguous in
LockedMagicm

Mixin Coercions Require Run-time Work

Object get(Securem o) {
 return o.needed();
}

LockedMagicDoorm door = new LockedMagicDoorm;
get(view Lockedm door); /∗ ==> key ∗/
get(view Magicm door); /∗ ==> magic book ∗/

Intermediate coercions allow door as a Securem

o.needed() accesses a different method each time

Method dispatching depends on the history of run-time coercions

Coercions Recorded with Views

NeedsKeym

needed

Securei

Securem

needed

canOpen

Doori

NeedsSpellm

needed

Securei

Securem

needed

canOpen

Lockedm
Magicm

LockedMagicm

Doori

Doorm

enter

canOpen

canPass

LockedMagicDoorm

new LockedMagicDoorm ⇒ door

NeedsKeym

Securem

NeedsSpellm

Securem

Doorm

view Lockedm door

NeedsKeym

Securem

NeedsSpellm

Securem

Doorm

⇒ door

NeedsKeym

Securem

NeedsSpellm

Securem

Doorm

Mixin Evaluation

Values are object-view pairs

Coercions adjust the run-time view of an object reference

〈 LockedMagicDoorm

,

get(view Lockedm door

NeedsKeym

Securem

NeedsSpellm

Securem

Doorm

) 〉

→ 〈 LockedMagicDoorm

,

get(door

NeedsKeym

Securem

NeedsSpellm

Securem

Doorm

) 〉

→ 〈 LockedMagicDoorm

,

door

NeedsKeym

Securem

NeedsSpellm

Securem

Doorm

.needed() 〉

Implementing Mixins

Every object reference is double-wide: half for object and half for view

Method lookup requires a two-dimensional virtual table per instantiated chain

Xc
m1

m2

m3

Xm

view

v1 v2 v3

m1

m2

m3

Cost of mixins = cost of interfaces

No cost to programs that do not use mixins

Mixins

Locally, programming with mixins is the same as single-inheritance classes...

... but the programmer is forced to ‘‘program to an interface, not an implementation’’

Mixin code is more reusable than class code

Cost of mixins is reasonable (same as interfaces)

