
Interpreter with Continuations

(define (eval-expression exp env cont)
 (cases expression exp
 (lit-exp (datum)
 (apply-cont cont datum))
 (var-exp (id)
 (apply-cont cont (apply-env env id)))
 (proc-exp (id body-exp)
 (apply-cont cont
 (closure id body-exp env)))
 ...)))

(define (apply-cont cont val)
 (cases continuation cont
 (done-cont () val)
 ...))

Continuations and Gotos

(define (eval-expression exp env cont)
 (cases exp ...
 (proc-exp (id body-exp)
 (apply-cont cont
 (closure id body-exp env)))

=>

(define EXP ...) (define CONT ...) ...

(define (eval-expression)
 (cases EXP ...
 (proc-exp (id body-exp)
 (set! VAL (closure id body-exp ENV))
 ;; CONT stays the same.
 (apply-cont)) ; "goto"

Continuations and Gotos

(define (eval-expression exp env cont)
 (cases exp...
 (app-exp (rator rand)
 (eval-expression
 rator env
 (app-arg-cont rand env cont)))

=>

(define (eval-expression)
 (cases EXP ...
 (app-exp (rator rand)
 (set! EXP rator)
 ;; ENV stays the same
 (set! CONT (app-arg-cont rand ENV CONT))
 (eval-expression)) ; "goto"

Continuations and Gotos

Explains why the following program never generates a stack overflow:

let f = proc(f) proc(n) ((f f) n)
 in ((f f) 0)

So we can compute arbitrarily deep recursions?

let f = proc(f)
 proc(n)
 if n then +(1, ((f f) -(n, 1)))
 else 0
 in ((f f) 1000000000)

No!

Allocation

We’ve avoided stack allocation

But we still have to allocate

Continuation records

Closures

Environment records

Allocation

Where do we call malloc ?

(define (eval-expression)
 (cases EXP ...
 (proc-exp (id body-exp)
 (set! VAL (closure id body-exp ENV))
 ;; CONT stays the same.
 (apply-cont))
 (app-exp (rator rand)
 (set! EXP rator)
 ;; ENV stays the same
 (set! CONT (app-arg-cont rand ENV CONT))
 (eval-expression))
 ...

Allocation

Where do we call malloc ?

(define (eval-expression)
 (cases EXP ...
 (proc-exp (id body-exp)
 (set! VAL (closure id body-exp ENV))
 ;; CONT stays the same.
 (apply-cont))
 (app-exp (rator rand)
 (set! EXP rator)
 ;; ENV stays the same
 (set! CONT (app-arg-cont rand ENV CONT))
 (eval-expression))
 ...

Exposing Allocation

(define (closure id body env)
 (let ([v (malloc 4)])
 (mem-set! v 0 closure-tag)
 (mem-set! v 1 id)
 (mem-set! v 2 body)
 (mem-set! v 3 env)
 v))

(define (closure? v)
 (= (mem-ref v 0) closure-tag))

(define (closure->id v)
 (mem-ref v 1))
...

Memory Allocator

(define memory (make-vector 200))
(define allocated 0)

(define (malloc size)
 (let ([result allocated])
 (set! allocated (+ allocated size))
 result))

(define (mem-set! a n v)
 (vector-set! memory (+ a n) v))

(define (mem-ref a n)
 (vector-ref memory (+ a n)))

Exposing Allocation

Explains why the following program runs out of memory:

let f = proc(f)
 proc(n)
 if n then +(1, ((f f) -(n, 1)))
 else 0
 in ((f f) 1000000000)

Each call to (f f) extends the continuation

Eventually, the continuation fills all memory

Exposing Allocation

Does the following program still run forever?

let f = proc(f) proc(n) ((f f) n)
 in ((f f) 0)

Each call to (f f)

creates an extended environment

creates a new closure

Need deallocation

Deallocation

Where do we call free ?

(define (apply-cont)
 (cond ...
 [(app-cont? CONT)
 (let ([rator (app-cont->rator CONT)]
 [old-cont (app-cont->cont CONT)])
 (set! EXP (closure->body rator))
 (set! ENV (extend-env
 (closure->id rator)
 VAL
 (closure->env rator)))
 (set! CONT old-cont))
 (eval-expression)]
 ...

Deallocation

Where do we call free ?

(define (apply-cont)
 (cond ...
 [(app-cont? CONT)
 (let ([rator (app-cont->rator CONT)]
 [old-cont (app-cont->cont CONT)])
 (set! EXP (closure->body rator))
 (set! ENV (extend-env
 (closure->id rator)
 VAL
 (closure->env rator)))
 (free CONT) ;; unless letcc’d!
 (set! CONT old-cont))
 (eval-expression)]
 ...

Deallocation

Where do we call free ?

(define (apply-cont)
 (cond ...
 [(app-cont? CONT)
 (let ([rator (app-cont->rator CONT)]
 [old-cont (app-cont->cont CONT)])
 (set! EXP (closure->body rator))
 (free ENV) ;; unless in a closure!
 (set! ENV (extend-env
 (closure->id rator)
 VAL
 (closure->env rator)))
 (set! CONT old-cont))
 (eval-expression)]
 ...

Reference Counting

Reference counting: a way to know whether a record has other users

Attatch a count to every record, start at 0

When installing a pointer to a record (into a regsiter, or another
record), increment its count

When replacing a pointer to a record, decrement its count

When a count is decremented to 0, decrement counts for other records
referenced by the record, then free it

Reference Counting

1
1

1

1

2

1
1

Reference Counting

1
1

0

1

3

1
1

Reference Counting

1
1

1

2

1
1

Reference Counting

1
1

0

2

1
1

Reference Counting

1
1

2

0
1

Reference Counting

1
1

2

1

Reference Counting

1
1

1

2

1
1

Reference Counting

1
1

2

2

1
1

Reference Counting

1
1

1

2

1
1

Reference Counting and Cycles

1
1

1

2

1
1

Pointer cycles break
reference counting

Garbage Collection

Garbage collection: a way to know whether a record has any users

A record referenced by a register is live

A record referenced by a live record is also live

A program can only possibly use live records, because there is no way
to get to other records

A garbage collector frees all records that are not live

We’ll allocate until we run out of memory, then run a garbage collector
to get more space

Garbage Collection Algorithm

Color all records white

Color records referenced by registers gray

Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it gray

Color r black

Deallocate all white records

Garbage Collection

Garbage Collection Garbage Collection

Garbage Collection Garbage Collection

Garbage Collection Garbage Collection

Garbage Collection Garbage Collection

Garbage Collection Garbage Collection

Garbage Collection Garbage Collection

Garbage Collection and Cycles

Pointer cycles do not
break garbage collection

Two-Space Copying Collectors

A two-space copying collector compacts memory as it collects, making
allocation easier.

Allocator:

Partitions memory into to-space and from-space

Allocates only in to-space

Collector:

Starts by swapping to-space and from-space

Coloring gray => copy from from-space to to-space

Choosing a gray record => walk once though the new to-space,
update pointers

Two-Space Collection Two-Space Collection

Two-Space Collection Two-Space Collection

Two-Space Collection Two-Space Collection

Two-Space Collection Two-Space Collection

Two-Space Collection Two-Space Collection

Two-Space Collection

