
Interpreter with Continuations

(define (eval-expression exp env cont)
  (cases expression exp
    (lit-exp (datum) 
      (apply-cont cont datum))
    (var-exp (id) 
      (apply-cont cont (apply-env env id)))
    (proc-exp (id body-exp)
      (apply-cont cont 
                (closure id body-exp env)))
    ...)))
  
(define (apply-cont cont val)
  (cases continuation cont
    (done-cont () val) 
    ...))

Continuations and Gotos

(define (eval-expression exp env cont)
 (cases exp ...
  (proc-exp (id body-exp)
    (apply-cont cont 
                (closure id body-exp env)))
 
=>
 
(define EXP ...) (define CONT ...) ...
 
(define (eval-expression)
 (cases EXP ...
  (proc-exp (id body-exp)
    (set! VAL (closure id body-exp ENV))
    ;; CONT stays the same.
    (apply-cont)) ; "goto"

Continuations and Gotos

(define (eval-expression exp env cont)
 (cases exp...
  (app-exp (rator rand)
    (eval-expression 
     rator env
     (app-arg-cont rand env cont)))
 
=>
 
(define (eval-expression)
 (cases EXP ...
  (app-exp (rator rand)
    (set! EXP rator)
    ;; ENV stays the same
    (set! CONT (app-arg-cont rand ENV CONT))
    (eval-expression)) ; "goto"

Continuations and Gotos

Explains why the following program never generates a stack overflow:

let f = proc(f) proc(n) ((f f) n)
 in ((f f) 0)

So we can compute arbitrarily deep recursions?

let f = proc(f)
          proc(n)
            if n then +(1, ((f f) -(n, 1))) 
                 else 0
 in ((f f) 1000000000)

No!



Allocation

We’ve avoided stack allocation

But we still have to allocate

Continuation records

Closures

Environment records

Allocation

Where do we call malloc ?

(define (eval-expression)
 (cases EXP ...
  (proc-exp (id body-exp)
    (set! VAL (closure id body-exp ENV))
    ;; CONT stays the same.
    (apply-cont))
  (app-exp (rator rand)
    (set! EXP rator)
    ;; ENV stays the same
    (set! CONT (app-arg-cont rand ENV CONT))
    (eval-expression))
  ...

Allocation

Where do we call malloc ?

(define (eval-expression)
 (cases EXP ...
  (proc-exp (id body-exp)
    (set! VAL (closure id body-exp ENV))
    ;; CONT stays the same.
    (apply-cont))
  (app-exp (rator rand)
    (set! EXP rator)
    ;; ENV stays the same
    (set! CONT (app-arg-cont rand ENV CONT))
    (eval-expression))
  ...

Exposing Allocation

(define (closure id body env)
  (let ([v (malloc 4)])
    (mem-set! v 0 closure-tag)
    (mem-set! v 1 id)
    (mem-set! v 2 body)
    (mem-set! v 3 env)
    v))
 
(define (closure? v)
  (= (mem-ref v 0) closure-tag))
 
(define (closure->id v)
  (mem-ref v 1))
...



Memory Allocator

(define memory (make-vector 200))
(define allocated 0)
 
(define (malloc size)
  (let ([result allocated])
    (set! allocated (+ allocated size))
    result))
 
(define (mem-set! a n v)
  (vector-set! memory (+ a n) v))
 
(define (mem-ref a n)
  (vector-ref memory (+ a n)))

Exposing Allocation

Explains why the following program runs out of memory:

let f = proc(f)
          proc(n)
            if n then +(1, ((f f) -(n, 1)))
                 else 0
 in ((f f) 1000000000)

Each call to (f f) extends the continuation

Eventually, the continuation fills all memory

Exposing Allocation

Does the following program still run forever?

let f = proc(f) proc(n) ((f f) n)
 in ((f f) 0)

Each call to (f f)

creates an extended environment

creates a new closure

Need deallocation

Deallocation

Where do we call free ?

(define (apply-cont)
  (cond ...
   [(app-cont? CONT)
    (let ([rator (app-cont->rator CONT)]
          [old-cont (app-cont->cont CONT)])
      (set! EXP (closure->body rator))
      (set! ENV (extend-env 
                 (closure->id rator)
                 VAL
                 (closure->env rator)))
      (set! CONT old-cont))
    (eval-expression)]
  ...



Deallocation

Where do we call free ?

(define (apply-cont)
  (cond ...
   [(app-cont? CONT)
    (let ([rator (app-cont->rator CONT)]
          [old-cont (app-cont->cont CONT)])
      (set! EXP (closure->body rator))
      (set! ENV (extend-env 
                 (closure->id rator)
                 VAL
                 (closure->env rator)))
      (free CONT) ;; unless letcc’d!
      (set! CONT old-cont))
    (eval-expression)]
  ...

Deallocation

Where do we call free ?

(define (apply-cont)
  (cond ...
   [(app-cont? CONT)
    (let ([rator (app-cont->rator CONT)]
          [old-cont (app-cont->cont CONT)])
      (set! EXP (closure->body rator))
      (free ENV) ;; unless in a closure!
      (set! ENV (extend-env 
                 (closure->id rator)
                 VAL
                 (closure->env rator)))
      (set! CONT old-cont))
    (eval-expression)]
  ...

Reference Counting

Reference counting: a way to know whether a record has other users

Attatch a count to every record, start at 0

When installing a pointer to a record (into a regsiter, or another
record),  increment its count

When replacing a pointer to a record,  decrement its count

When a count is decremented to 0, decrement counts for other records
referenced by the record,  then free it
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Reference Counting and Cycles
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Pointer cycles break
reference counting

Garbage Collection

Garbage collection: a way to know whether a record has any users

A record referenced by a register is live

A record referenced by a live record is also live

A program can only possibly use live records, because there is no way
to get to other records

A garbage collector frees all records that are not live

We’ll allocate until we run out of memory, then run a garbage collector
to get more space

Garbage Collection Algorithm

Color all records white

Color records referenced by registers gray

Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it gray

Color r black

Deallocate all white records

Garbage Collection
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Garbage Collection and Cycles

Pointer cycles do not
break garbage collection

Two-Space Copying Collectors

A two-space copying collector compacts memory as it collects, making
allocation easier.

Allocator:

Partitions memory into to-space and from-space

Allocates only in to-space

Collector:

Starts by swapping to-space and from-space

Coloring gray => copy from from-space to to-space

Choosing a gray record => walk once though the new to-space,
update pointers

Two-Space Collection Two-Space Collection
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Two-Space Collection


