
Outline

More optimizations for our interpreter

Types for objects

Optimization

Eliminate tree walks: object creation, method calls

fish

size

initialize

get_size

grow

eat

colorfish

color

set_color

get_color

pickyfish

grow

Object Creation

Current interpreter:

 1. Find class

 2. Get field list (walk tree)

 3. Allocate field array and object

To eliminate tree walks:

 2. Extract flat field list from class

Method Calls

After object and arguments are determined:

 1. Lookup object class

 2. Find class containing method (walk tree)

 3. Get variables for class (walk tree)

 4. Create environment: fields + %super + self + args

 5. Evaluate method body

To eliminate tree walks:

 2 & 3. Find method in current class, extract variable list

Class Elaboration

fish

size

initialize

get_size

grow

eat

colorfish

color

set_color

get_color

pickyfish

grow

Class Elaboration

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

Class Elaboration

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

new colorfish(3)

Class Elaboration

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

send cf get_size()

Implementation

See the book and web page:

Change elaborate-class-decls! to build annotated tree

Change new-object to use class’s immediate field list

Change apply-method to work with annotated methods

More Optimization

Still have list walks: variable lookup, method lookup

Can eliminate many with lexical addresses

Can eliminate some by pre-computing method positions

Need type information to eliminate others

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

size=+(size,s)

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

size=+(size,s)

@(1,0)=+(@(1,0),@(0,2))

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

In pickyfish:

super grow(-(f,1))

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

In pickyfish:

super grow(-(f,1))

fish.grow(-(@(0,2),1))

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

In pickyfish:

send self grow(s)

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

In pickyfish:

send self grow(s)

send @(1,0) m@2(@(0,0))

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

send o grow(8)

More Optimization: List Walks

fish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object

colorfish

size

color

initialize, {size}, object
get_size, {size}, object
grow, {size}, object
eat, {size}, object
set_color, {size color}, fish
get_color, {size color}, fish

pickyfish

size

initialize, {size}, object
get_size, {size}, object
grow, {size}, fish
eat, {size}, object

send o grow(8)

need type of o!

Object Types

new c1()

c1

... if c1 has an initialize method that takes no arguments

class c1 extends ...
 method void initialize() ...

Object Types

new c1(5)

int

c1

... if c1 has an initialize method that takes one integer

class c1 extends ...
 method void initialize(int v) ...

Object Types

send new c1() m(false)

c1 bool

int

... if c1 has an m method that takes bool and returns int

class c1 extends ...
 method void initialize() ...
 method int m(bool v) ...

Object Types

class fish extends object
 field int size
 method void initialize (int s) ...
 method void eat(fish other) ...
class colorfish extends fish
 ...

send new fish(8) eat(new colorfish(1))

fish colorfish

colorfish doesn’t match fish

Subtyping

Subtype: An instance of class C can be used as an instance of class
C’ if C is derived from C’

C <: C’

Subtype rule:

If e : T and T <: T’ , then e : T’

Object Types

class fish extends object
 field int size
 method void initialize (int s) ...
 method void eat(fish other) ...
class colorfish extends fish
 ...

send new fish(8) eat(new colorfish(1))

fish colorfish <: fish

void

Language Changes

Add types to field declarations

Add types to method arguments and result

Add abstract class and abstractmethod

Add instanceof

Add cast

Program Checking

fish

int size

void initialize(int)

int get_size()

void grow(int)

void eat(fish)

colorfish

int color

void set_color(int)

int get_color()

pickyfish

void grow(int)

send
 new fish(3)
get_size()
: int

Things to Check

cast and instanceof:

Operand has an object type (for any class)

Target class exists

cast o c1 instanceof o c7

Things to Check

cast and instanceof:

Operand has an object type (for any class)

Target class exists

cast only:

Class for operand and target are comparable

Otherwise, cast cannot possibly succeed

class c1 extends object ...
class c2 extends object ...
cast new c1() c2

Things to Check

Object creation:

Class exists, and is not abstract

Class has an initialize method

initialize’s argument types match the operand types

class c1 extends object
 method void initialize(int x, bool y)
 ...

new c1(1, false)

Things to Check

Method calls:

Receiver expression is an object

Method is in the object-type’s class

Except initialize...

Method’s argument types match the operand types

class c1 extends object
 method void initialize() ...
 method void m(int x, bool y)
 ...
let o1 = new c1()
in send o1 m(1, false)

Things to Check

super calls:

Expression is within a method

Method is in the superclass, and not abstract

Method’s argument types match the operand types

class c1 extends object
 method void m(int x, bool y)
 ...

class c2 extends c1
 method void n()
 super m(1, false)
 ...

Things to Check

class declarations:

Superclass exists, and no cyclic inheritance

Methods bodies ok

Use host class for type of self

Overriding method signatures the same as in superclass

Except for initialize

class c2 extends c1
 method void m(int x, bool y)
 if y then +(2, x) else send self w()

The Initialize Method

class c1 extends obj
 field int x
 method void initialize()
 set x = 3
 method int m()
 send self initialize()

class c2 extends c1
 field int y
 method void initialize(int v)
 set y = v
 super initialize()
 ...

Derived class needs different signature for initialize

The Initialize Method

class c1 extends obj
 field int x
 method void initialize()
 set x = 3
 method int m()
 send self initialize()

class c2 extends c1
 field int y
 method void initialize(int v)
 set y = v
 super initialize()
 ...

Disallow send to initialize

The Initialize Method

class c1 extends obj
 field int x
 method void initialize()
 set x = 3
 method int m()
 send self initialize()

class c2 extends c1
 field int y
 method void initialize(int v)
 set y = v
 super initialize()
 ...

super call to initialize is ok

Field Initializations

Not checked: field initializations

class interior_node extends tree
 field tree left
 field tree right
 method void initialize(tree l, tree r)
 begin
 send left sum();
 ...
 end

Can get "bad object 0 for method call"

This is analogous to the null error in Java

Type Checking and Errors

Disallowed errors:

Object has no such method, or Super method not found

Can’t call method of non-object, non-0

No such field, no such variable

Illegal primitive argument (except car of empty)

Allowed errors:

Can’t call method of 0

Cast failed

Car of empty

Implementation

See the book and web page

Mixing Subtyping and Procedures

Our language still has procedures:

let feed = proc(colorfish f)
 send f grow(10)
 o1 = new colorfish(0)
 in
 (feed o1)

Mixing Subtyping and Procedures

And higher-order procedures:

let feed = proc(colorfish f)
 send f grow(10)
 o1 = new colorfish(0)
 o2 = new colorfish(1)
 in let toboth = proc((colorfish -> void) p)
 begin
 (p o1);
 (p o2)
 end
 in (toboth feed)

Mixing Subtyping and Procedures

Subtyping on procedure arguments:

let feed = proc(fish f)
 send f grow(10)
 o1 = new colorfish(0)
 in
 (feed o1)

This works, and is allowed by our subtyping rule

Mixing Subtyping and Procedures

Subtyping on procedure arguments:

let feed = proc(fish f)
 send f grow(10)
 o1 = new colorfish(0)
 o2 = new colorfish(1)
 in let toboth = proc((colorfish -> void) p)
 begin
 (p o1);
 (p o2)
 end
 in (toboth feed)

This works, but is not allowed by our subtyping rule

(fish -> void) versus (colorfish -> void)

Procedure Subtyping Rule

If T1 <: T1’ and T2 <: T2’

then (T1’ -> T2) <: (T1 -> T2’)

Another example:

dog <: animal

a dog can go anywhere an animal can go

(animal -> hairstyle) <: (dog -> hairstyle)

a groomer for all animals can groom a dog

a groomer who only works with dogs doesn’t work for all animals

Procedure Subtyping Rule

If T1 <: T1’ and T2 <: T2’

then (T1’ -> T2) <: (T1 -> T2’)

General intuition:

 T1 <: T1’ means T1’ is more general than T1

dog

animal

A function that is willing to accept a more general argument is itself
more specific

(animal -> T2)

(dog -> T2)

Procedure Subtyping Rule

If T1 <: T1’ and T2 <: T2’

then (T1’ -> T2) <: (T1 -> T2’)

Procedure types are contravariant with respect to their argument
types

Procedure types are covariant with respect to their result types

