

Mid-Term 2

Open book

Open notes

Everything through today

lexical scope, environments, closures, evaluation, assignment,
parameter-passing mechanisms, types

Example questions on the schedule page

HW9

New construct C equivalent

ref(x) &x

setref(E1, E2) (*E1 = E2, 1)

let x = 0
 in let y = ref(x)
 in let d = setref(y, 2)
 in x

Result: 2

HW9

let x = 0
 in let y = ref(x)
 in let d = setref(y, true)
 in x

Result: true

But should it be allowed?

HW9

let x = 0
 in let y = ref(x)
 in let d = if ...
 then 1
 else setref(y, true)
 in +(x, 0)

Might crash.

Solution: only allow assignments that do not change a variable’s type

HW9

let x = 0 : int

 in let y = ref(x) : (refto int)

 in let d = setref(y, 1)
 in +(x, 0)

Ok

HW9

let x = 0 : int

 in let y = ref(x) : (refto int)

 in let d = setref(y, true)
 in +(x, 0)

Not ok

First argument of setref must have type (refto T)

Second argument of setref must have type T, for the same T

Back to our regularly scheduled programming...

 : squash

Type-Checking Expressions

What is the value of the following expression?

proc(x)+(x,1)

Answer: Yet another trick question; it’s not an expression in our typed
language, because the argument type is missing

But, clearly, the answer should be (int -> int)

Type Inference

Type inference is the process of inserting type annotations where the
programmer omits them.

We’ll use explicit question marks, to make it clear where types are
being omitted.

proc (?1 x)+(x,1)

Type Inference

+(x, 1)proc(?1 x)

T1 int

int T1 = int

int -> int

proc(?1 x)if true then 1 else x

bool int T1

int -> int T1 = int

proc(?1 x)if x then 1 else x

T1 int T1

no type: T1 can’t be both bool and int

Type Inference

proc(?1 y)y

T1

T1 -> T1

(proc(?1 y)y proc(?2 x)+(x, 1))

T1 -> T1 int -> int

int -> int

T1 = int -> int

(y 7)proc(?1 y)

T1 int

T2 T1 = int -> T2

(int -> T2) -> T2

Type Inference

(x x)proc(?1 x)

T1 T1

no type: T1 can’t be T1 -> ...

T1 can’t be int

T1 can’t be bool

Suppose T1 is T2 -> T3

T2 must be T1

So we won’t get anywhere!

Implementation

Extend type datatype with tvar-type variant

(define-datatype type type?
 ...
 (tvar-type
 (serial-number integer?)
 (container vector?)))

Create a new type variable record for each ?

Initial container value is ‘‘don’t know’’, ’()

Create a new type variable record for each application

Change check-equal-type! to read and set type variable
containers

The Universe of Programs

The goal of type-checking is to rule out bad programs

+(1, true)

Unfortunately, some good programs will be ruled out, too

+(1, if true then 1 else false)

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

Every program falls into one of three categories

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

The idea is that a type checker rules out the error category

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

But a type checker for most languages will allow some errors!

1 / 0 ⇒ divide by zero

The Universe of Programs

programs that run
forever

programs that
crash on variants

programs that
crash on types

programs that
produce values

well-typed
programs

Still, a type checker always rules out a certain class of errors

Division by 0 is a variant error

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

Our language happens to have no variant errors, so the type checker
rules out all errors

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

In fact, if we get rid of letrec, then every well-typed program
terminates with a value!

Intution for Termination

Recall that to get rid of letrec

letrec int sum = proc(int x)
 if zero?(x)
 then 0
 else +(x,(sum -(x, 1)))
 in (sum 10)

we can use self-application:

let sum = proc(int x, ? sum)
 if zero?(x)
 then 0
 else +(x,((sum sum) -(x, 1)))
 in ((sum sum) 10)

Intution for Termination

But we’ve already seen that we can’t type self-application:

(x x)proc(?1 x)

T1 T1

no type: T1 can’t be T1 -> ...

The only way around this restriction is to restore letrec or extend the
type language.

(Extending the type language in this direction is beyond the scope of the
course.)

The Universe of Programs

There are other ways that we’d like to expand the set of well-formed
programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

The Universe of Programs

There are other ways that we’d like to expand the set of well-formed
programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

Adjusting the type rules can allow more programs

Polymorphism

proc(?1 y)y

T1

T1 -> T1

let f = prog(?1 y)y : T1 -> T1

if (f true) then (f 1) else (f 0) in

T1 -> T1 T1 -> T1 T1 -> T1

no type: T1 can’t be both bool and int

Polymorphism

New rule: when type-checking the use of a let-bound variable, create
fresh versions of unconstrained type variables

let f = prog(?1 y)y : T1 -> T1

if (f true) then (f 1) else (f 0) in

T2 -> T2 T3 -> T3 T4 -> T4

int

T2 = bool T3 = int T4 = int

This rule is called let-based polymorphism

