

Mid-Term 2

- Open book
- Open notes
- Everything through today
 - lexical scope, environments, closures, evaluation, assignment, parameter-passing mechanisms, types
- Example questions on the schedule page

HW9

New construct C equivalent

ref(x) &x

setref(E1, E2) (*E1 = E2, 1)

let x = 0
in let y = ref(x)
 in let d = setref(y, 2)
 in x

Result: 2

HW9

```
let x = 0
in let y = ref(x)
    in let d = setref(y, true)
        in x
```

Result: true

But should it be allowed?

HW9

Might crash.

Solution: only allow assignments that do not change a variable's type

HW9

```
let x = 0 : int
  in let y = ref(x) : (refto int)
  in let d = setref(y, true)
      in +(x, 0)
```

Not ok

- First argument of setref must have type (refto T)
- Second argument of setref must have type T, for the same T

HW9

```
let x = 0 : int
in let y = ref(x) : (refto int)
in let d = setref(y, 1)
in +(x, 0)
```

Ok

Back to our regularly scheduled programming...

Type-Checking Expressions

• What is the value of the following expression?

$$proc(x)+(x,1)$$

- Answer: Yet another trick question; it's not an expression in our typed language, because the argument type is missing
- But, clearly, the answer *should* be (int -> int)

Type Inference

- *Type inference* is the process of inserting type annotations where the programmer omits them.
- We'll use explicit question marks, to make it clear where types are being omitted.

$$proc (?_1 x) + (x,1)$$

Type Inference

$$\frac{\text{proc}(?_1 \text{ x})\text{if } \underline{\text{true}}}{\text{bool}} \text{ then } \underline{1} \text{ else } \underline{x}}{\text{bool}}$$

$$\text{int } -> \text{ int } T_1 = \text{int}$$

$$\frac{\texttt{proc(?_1 x)if x then 1 else x}}{\mathsf{T_1}} \xrightarrow{\mathsf{int}} \overset{\mathsf{T_1}}{\mathsf{T_1}}$$

$$\underbrace{\mathsf{no type:}}_{\mathsf{T_1}} \mathsf{Can't be both bool and int}$$

Type Inference

$$\frac{\text{proc}(?_1 \ y)y}{ | | | | | | |}$$

$$T_1 \rightarrow T_1$$

Type Inference

proc(
$$?_1 \times)(\times \times)$$
 T_1

no type: T_1 can't be $T_1 \rightarrow ...$

- T₁ can't be int
- T₁ can't be bool
- Suppose T₁ is T₂ → T₃
 - O T₂ must be T₁
 - So we won't get anywhere!

The Universe of Programs

• The goal of type-checking is to rule out bad programs

• Unfortunately, some good programs will be ruled out, too

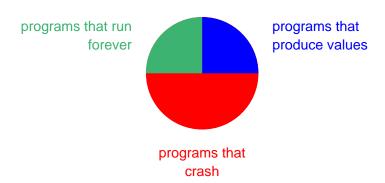
Implementation

• Extend type datatype with tvar-type variant

```
(define-datatype type type?
    ...
  (tvar-type
        (serial-number integer?)
        (container vector?)))
```

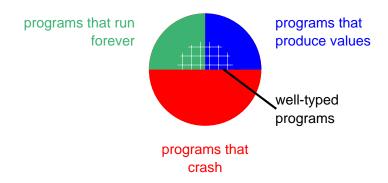
- Create a new type variable record for each ?
 - Initial container value is "don't know", '()
- Create a new type variable record for each application
- Change check-equal-type! to read and set type variable containers

The Universe of Programs



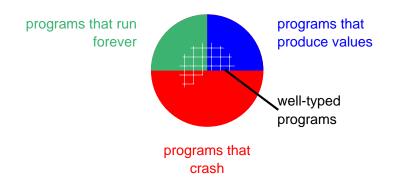
Every program falls into one of three categories

The Universe of Programs



• The idea is that a type checker rules out the error category

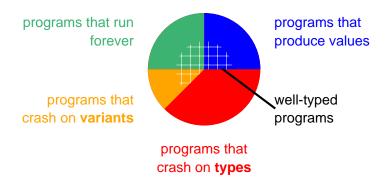
The Universe of Programs



• But a type checker for most languages will allow some errors!

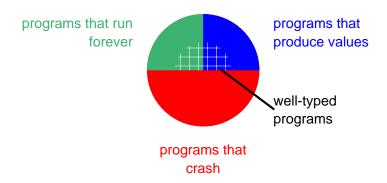
 $1 / 0 \Rightarrow divide by zero$

The Universe of Programs



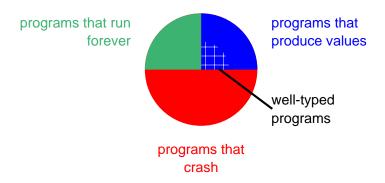
- Still, a type checker *always* rules out a certain class of errors
 - O Division by 0 is a *variant error*

The Universe of Programs



 Our language happens to have no variant errors, so the type checker rules out all errors

The Universe of Programs



• In fact, if we get rid of letrec, then every well-typed program terminates with a value!

Intution for Termination

Recall that to get rid of letrec

Intution for Termination

But we've already seen that we can't type self-application:

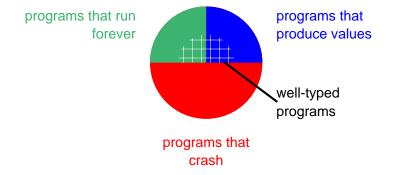
proc(?₁ x)(x x)
$$T_1 T_1$$
no type: T_1 can't be $T_1 \to ...$

The only way around this restriction is to restore letrec or extend the type language.

(Extending the type language in this direction is beyond the scope of the course.)

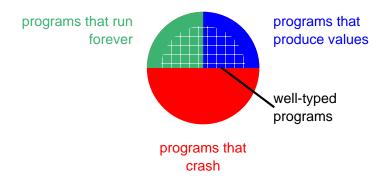
The Universe of Programs

 There are other ways that we'd like to expand the set of well-formed programs



The Universe of Programs

 There are other ways that we'd like to expand the set of well-formed programs



Adjusting the type rules can allow more programs

Polymorphism

 New rule: when type-checking the use of a let-bound variable, create fresh versions of unconstrained type variables

let f = prog(?₁ y)y :
$$T_1 \rightarrow T_1$$

in if (f true) then (f 1) else (f 0)
 $T_2 \rightarrow T_2$ $T_3 \rightarrow T_3$ $T_4 \rightarrow T_4$
int
 $T_2 = bool$ $T_3 = int$ $T_4 = int$

• This rule is called *let-based polymorphism*

Polymorphism

let
$$f = prog(?_1 y)y : T_1 \rightarrow T_1$$

in if (f true) then (f 1) else (f 0)
$$T_1 \rightarrow T_1 \qquad T_1 \rightarrow T_1 \qquad T_1 \rightarrow T_1$$
no type: T_1 can't be both bool and int