```
let f = proc(x)0
    in (f +(1,+(2,+(3,+(4,+(5,6))))))
```

The computed 21 is never used.
What if we were lazy about computing function arguments (in case they aren't used)?

Manual laziness:

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x t h u n k) 0 \\
& \text { in }(f \operatorname{proc}()+(1,+(2,+(3,+(4,+(5,6)))))) \\
& \text { let } f=\operatorname{proc}(x t h u n k)-((x \text { thunk }), 7) \\
& \text { in }(f \operatorname{proc}()+(1,+(2,+(3,+(4,+(5,6))))))
\end{aligned}
$$

By using proc to delay evaluation, we can avoid unnecessary computation.

How about making the language compute function arguments lazily in all applications?
\triangle
let $\mathrm{f}=\mathrm{proc}(\mathrm{x}) 0$
in (f $+(1,2)$)

let $\mathrm{f}=\mathrm{proc}(\mathrm{x}) 0$
in (f $+(1,2)$)

Qrer

$$
+(1,2)
$$

let $\mathrm{f}=\mathrm{proc}(\mathrm{x}) 0$
in (f $+(1,2)$)

$$
x>+\cdots(1,2) \cdot \bullet
$$

let $f=\operatorname{proc}(x) 0$
in (f $+(1,2)$)
$\mathrm{x} \cdot \bullet \rightarrow+(1,2) \cdot$

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x) 0 \\
& \text { in }(f+(1,2))
\end{aligned}
$$

The result is 0 .
$\stackrel{O}{0}$

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x)-(x, 1) \\
& \text { in }(f+(1,2))
\end{aligned}
$$

Q
let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in (f $+(1,2)$)

$$
+(1,2)
$$

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x)-(x, 1) \\
& \text { in }(f+(1,2))
\end{aligned}
$$

Qr

$\stackrel{\times 1}{ } \cdot \boldsymbol{\bullet} \cdot+(1,2) \cdot$
let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in (f $+(1,2)$)

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x)-(x, 1) \\
& \text { in }(f+(1,2))
\end{aligned}
$$

Force evaluation of thunk.
$\rightarrow \boldsymbol{x} \rightarrow \boldsymbol{\bullet} \rightarrow(1,2) \cdot$

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x)-(x, 1) \\
& \text { in }(f+(1,2))
\end{aligned}
$$

With 3 as the value of x.

$\mathrm{x} \cdot \bullet \rightarrow+(1,2) \cdot \bullet$

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x)-(x, 1) \\
& \text { in }(f+(1,2))
\end{aligned}
$$

The result is 2 .
\therefore

$$
\begin{gathered}
\text { let } f=\operatorname{proc}(x)-(x, 1) \\
\text { in } \operatorname{let} y=7 \\
\text { in }(f+(1, y))
\end{gathered}
$$

Lazy expression that needs its environment

let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in let $y=7$
in (f $+(1, y)$)

$$
\begin{gathered}
\text { let } f=\operatorname{proc}(x)-(x, 1) \\
\text { in let } y=7 \\
\text { in }(f+(1, y))
\end{gathered}
$$

$$
\begin{aligned}
& \xrightarrow{\text { 开 }} \rightarrow \bullet \rightarrow-(x, 1) \cdot \bullet \\
& \mathrm{y} \cdot>7 \\
& +(1, \mathrm{y})
\end{aligned}
$$

let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in let $y=7$

$$
\operatorname{in}(f+(1, y))
$$

$$
\begin{gathered}
\text { let } f=\operatorname{proc}(x)-(x, 1) \\
\text { in } \operatorname{let} y=7 \\
\text { in }(f+(1, y))
\end{gathered}
$$

$$
\begin{gathered}
\text { let } f=\operatorname{proc}(x)-(x, 1) \\
\text { in } \operatorname{let} y=7 \\
\text { in }(f+(1, y))
\end{gathered}
$$

let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in let $y=+(3,4)$

$$
\operatorname{in}(f+(1, y))
$$

Change binding of y to an expression.

Q
let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in let $y=+(3,4)$
in (f $+(1, y)$)

$$
\begin{gathered}
\text { let } \mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1) \\
\text { in let } \mathrm{y}=+(3,4) \\
\text { in }(\mathrm{f}+(1, \mathrm{y}))
\end{gathered}
$$

Added lazy binding for y.

let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in let $y=+(3,4)$
in (f $+(1, y)$)

let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in let $y=+(3,4)$
in (f $+(1, y)$)

let $\mathrm{f}=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1)$
in let $y=+(3,4)$
in (f $+(1, y)$)

$$
\begin{gathered}
\text { let } f=\operatorname{proc}(\mathrm{x})-(\mathrm{x}, 1) \\
\text { in } \operatorname{let} \mathrm{y}=+(3,4) \\
\text { in }(\mathrm{f}+(1, \mathrm{y}))
\end{gathered}
$$

Interpreter changes:

- Change eval-fun-rands to create thunks.
- Change variable lookup to eval thunks.

The lazy strategy we just implemented is call-by-name.

- Advantage: unneeded arguments are not computed.
- Disadvantage: needed arguments may be computed many times.

$$
\begin{aligned}
& \text { let } f=\operatorname{proc}(x)+(x,+(x, x)) \\
& \text { in }(f+(1,+(2,+(3,+(4,+(5,6))))))
\end{aligned}
$$

Best of both worlds: call-by-need
Evaluates each lazy expression once, then remembers the result.

Interpreter changes:

- Change variable lookup to replace thunks in locations with their values.
- Call-by-name, call-by-need = lazy evaluation
- Call-by-value = eager evaluation

Call-by-reference can augment either

- Most languages are call-by-value
${ }^{\circ}$ C, C++, Pascal, Scheme, Java, ML, Smalltalk...
- Some provide call-by-reference
- C++, Pascal
- A few are call-by-need
- Haskell
- Practically none are call-by-name

Why don't more languages provide lazy evaluation?

- Disadvantage: evaluation order is not obvious.

$$
\begin{array}{rl}
\text { let } & x=0 \\
f & f \\
\text { in let } y=\text { set } x=1 \\
& z=\text { set } x=2 \\
& \text { in }\{(f y z) ; x\}
\end{array}
$$

Why do some languages provide lazy evaluation?

- Evaluation order does not matter if the language has no set form.
- Such languages are called purely functional.

Note: call-by-reference is meaningless in a purely functional language.

- A language with set can be called imperative.

Even in a purely functional language, lazy and eager evaluation produce different results.

```
let f = proc(x)0
    in (f <loop forever>)
```

- Eager answer: none
- Lazy answer: 0

