

 let f = proc(x)0
 in (f +(1,+(2,+(3,+(4,+(5,6))))))

The computed 21 is never used.

What if we were lazy about computing function arguments (in case they
aren’t used)?

1

Manual laziness:

 let f = proc(xthunk)0
 in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

 let f = proc(xthunk)-((xthunk), 7)
 in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

By using proc to delay evaluation, we can avoid unnecessary
computation.

How about making the language compute function arguments lazily in all
applications?

2

 let f = proc(x)0
 in (f +(1,2))

3

f x 0

 let f = proc(x)0
 in (f +(1,2))

4

f x 0

+(1,2)

 let f = proc(x)0
 in (f +(1,2))

5

f x 0

x +(1,2)

 let f = proc(x)0
 in (f +(1,2))

6

f x 0

x +(1,2)

 let f = proc(x)0
 in (f +(1,2))

The result is 0.

7

 let f = proc(x)-(x,1)
 in (f +(1,2))

8

f x -(x,1)

 let f = proc(x)-(x,1)
 in (f +(1,2))

9

f x -(x,1)

+(1,2)

 let f = proc(x)-(x,1)
 in (f +(1,2))

10

f x -(x,1)

x +(1,2)

 let f = proc(x)-(x,1)
 in (f +(1,2))

11

f x -(x,1)

x +(1,2)

 let f = proc(x)-(x,1)
 in (f +(1,2))

Force evaluation of thunk.

12

f x -(x,1)

x +(1,2)

 let f = proc(x)-(x,1)
 in (f +(1,2))

With 3 as the value of x.

13

f x -(x,1)

x +(1,2)

 let f = proc(x)-(x,1)
 in (f +(1,2))

The result is 2.

14

 let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Lazy expression that needs its environment

15

f x -(x,1)

 let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

16

f x -(x,1)

y 7

 let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

17

f x -(x,1)

y 7

+(1,y)

 let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

18

f x -(x,1)

y 7

x +(1,y)

 let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

19

f x -(x,1)

y 7

x +(1,y)

 let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

20

 let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Change binding of y to an expression.

21

f x -(x,1)

 let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

22

f x -(x,1)

y +(3,4)

 let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Added lazy binding for y.

23

f x -(x,1)

y +(3,4)

+(1,y)

 let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

24

f x -(x,1)

y +(3,4)

x +(1,y)

 let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

25

f x -(x,1)

y +(3,4)

x +(1,y)

 let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

26

f x -(x,1)

y +(3,4)

x +(1,y)

 let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

27

Interpreter changes:

Change eval-fun-rands to create thunks.

Change variable lookup to eval thunks.

28

The lazy strategy we just implemented is call-by-name.

Advantage: unneeded arguments are not computed.

Disadvantage: needed arguments may be computed many times.

 let f = proc(x)+(x,+(x,x))
 in (f +(1,+(2,+(3,+(4,+(5,6))))))

Best of both worlds: call-by-need
Evaluates each lazy expression once, then remembers the result.

29

Interpreter changes:

Change variable lookup to replace thunks in locations with their
values.

30

Call-by-name, call-by-need = lazy evaluation

Call-by-value = eager evaluation

Call-by-reference can augment either

31

Most languages are call-by-value
C, C++, Pascal, Scheme, Java, ML, Smalltalk...

Some provide call-by-reference
C++, Pascal

A few are call-by-need
Haskell

Practically none are call-by-name

32

Why don’t more languages provide lazy evaluation?

Disadvantage: evaluation order is not obvious.

 let x = 0
 f = ...
 in let y = set x=1
 z = set x=2
 in { (f y z) ; x }

33

Why do some languages provide lazy evaluation?

Evaluation order does not matter if the language has no set form.

Such languages are called purely functional.

Note: call-by-reference is meaningless in a purely functional language.

A language with set can be called imperative.

34

Even in a purely functional language, lazy and eager evaluation produce
different results.

 let f = proc(x)0
 in (f <loop forever>)

Eager answer: none

Lazy answer: 0

35

