

What is the result of this program?

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

Is it 0 or 1?

1

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

2

x set x = 1

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

3

f x set x = 1

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

4

f x set x = 1

y 0

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

5

f x set x = 1

y 0

x 0

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

6

f x set x = 1

y 0

x 1

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

7

f x set x = 1

y 0

x 1

 let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

So the answer is 0.

8

void f(int x) {
 x = 1;
}

int main() {
 int y = 0;
 f(y);
 return y;
}

The result above is 0, too.

9

void f(int& x) {
 x = 1;
}

int main() {
 int y = 0;
 f(y);
 return y;
}

But the result above is 1.

10

void f(int& x) {
 x = 1;
}

int main() {
 int y = 0;
 f(y);
 return y;
}

This example shows call-by-reference.

The previous example showed call-by-value.

11

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Adding call-by-reference parameters to our language.

12

&x set x = 1

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

13

f &x set x = 1

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

14

f &x set x = 1

y 0

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

15

f &x set x = 1

y 0

x
?

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

The pointer from one environment frame to another is questionable,
because frames are supposed to point to values.

16

f &x set x = 1

y 1

x
?

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

17

f &x set x = 1

y 1

x
?

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

18

What changes in the interpreter?

19

Same as before:

Expressed values: Number + Proc

Denoted values: Ref(Expressed Value)

20

Same as before:

Expressed values: Number + Proc

Denoted values: Ref(Expressed Value)

The difference is that application doesn’t always create a new location
for a new variable binding.

=> Separate location creation from environment extension

21

x 10
y 12

The old way

 let x = 10
 y = 12
 in +(x,y)

22

x
y

10
12

The new way

 let x = 10
 y = 12
 in +(x,y)

23

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Do the previous evaluation the new way...

24

&x set x = 1

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

25

f &x set x = 1

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

26

f &x set x = 1

y 0

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

27

f &x set x = 1

y 0

x

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

This time, the new environment frame points to a location box, which is
consistent with other frames.

28

f &x set x = 1

y 1

x

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

29

f &x set x = 1

y 1

x

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

30

f &x set x = 1

y 0

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f 0);
 y }

If call-by-reference argument is not a variable...

31

f &x set x = 1

y 0

x 0

 let f = proc(&x) set x = 1
 in let y = 0
 in { (f 0);
 y }

... always create a location.

32

Interpreter changes (starting with pre-letrec version):

Add call-by-reference arguments (indicated by &).
New var type, with cbv-var and cbr-var

Create explicit locations for variables.
location, location-val, location-set!

Change variable lookup to deference locations.

Change set to work on locations.

Change eval-rands and apply-proc.
make-var-location helper proc

33

void f(int* x) {
 *x = 1;
}

int main() {
 int y = 0;
 f(&y);
 return y;
}

34

void f(int* x) {
 *x = 1;
}

int main() {
 int y = 0;
 f(&y);
 return y;
}

This is back to call-by-value, but with a reference as a value.

To study this form of call, we can add explicit references to our
language, too.

35

x setref(x, 1)

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

36

f x setref(x, 1)

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

37

f x setref(x, 1)

y 0

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

38

f x setref(x, 1)

y 0

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

39

f x setref(x, 1)

y 0

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

40

f x setref(x, 1)

y 0

x

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

41

f x setref(x, 1)

y 1

x

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

42

f x setref(x, 1)

y 1

x

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

43

Revised language:

Expressed vals: Number + Proc + Ref(Expressed Val)

Denoted vals: Ref(Expressed Val)

Interpreter changes:

Add reference values.

Add ref form and setref primitive.

44

