
let x = 10
 y = 12
 in set x = +(x,1);
 x

Can’t write this, since we don’t have ; in our language.

1

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Instead, use a binding for a dummy variable d to sequence
expressions. Initial environment is empty.

2

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Eval RHS (right-hand side) of the let expression. Purple part of program
shows the current expression. Top area shows environments, with
purple arrow to the current one.

3

x 10
y 12

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Extend the current environment with x and y, and eval body.

4

x 10
y 12

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Eval RHS of the let expression.

5

x 11
y 12

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

It modifies the x in the current lexical scope. We define set to always
return 1.

6

x 11
y 12

d 1

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Bind d to the result 1. To eval the body, x, we look it up in the
environment as usual, and find 11.

7

x 11
y 12

d 1

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

The Point: Variables now correspond to boxes in the environment, not
fixed values.

8

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

An example with proc. Again, we start with the empty environment.

9

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Eval RHS of the let expression.

10

x 10
y 12

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Extend the current environment with x and y, and eval body.

11

x 10
y 12

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Eval RHS of the let expression...

12

x 10
y 12

z +(z,x)

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

... which creates a closure, pointing to the current environment.

13

x 10
y 12

f z +(z,x)

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

To finish the let, the environment is extended with f bound to the
closure. Then evaluate the body.

14

x 10
y 12

f z +(z,x)

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Eval RHS of the let expression...

15

x 11
y 12

f z +(z,x)

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

... which changes the value of x, then produces 1.

16

x 11
y 12

f z +(z,x)

d 1

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

To eval the body, (f 0), we look up f in the environment to find a
closure, and evaluate 0 to 0.

17

x 11
y 12

f z +(z,x)

d 1

z 0

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Extend the closure’s environment with 0 for z, and evaluate the
closure’s body in that environment. The result will be 11.

18

x 11
y 12

f z +(z,x)

d 1

z 0

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

The Point: By capturing environments, closures capture variables that
may change.

19

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Another example with proc, but with the let inside the proc.

20

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Eval RHS of the let expression...

21

z let x = 10 in let d = set x = +(x,z) in x

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

... which creates a closure, pointing to the current environment.

22

f z let x = 10 in let d = set x = +(x,z) in x

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Bind the closure to f and eval the body.

23

f z let x = 10 in let d = set x = +(x,z) in x

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Evaluate the first operand, (f 1).

24

f z let x = 10 in let d = set x = +(x,z) in x

z 1

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Take the closure for f, extend its environment with a binding for z, and
eval the closure’s body.

25

f z let x = 10 in let d = set x = +(x,z) in x

z 1

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Eval the RHS.

26

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 10

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Add the binding for x and eval the inner body.

27

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 10

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Eval RHS...

28

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

... which modifies the value of x.

29

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Bind d to 1 and evaluate x, which produces 11.

30

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

First operand is 11. Now evaluate the second operand, (f 9).

31

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Again, take the closure for f, extend the closure’s environment with a
binding for z, and eval the closure’s body.

32

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 10

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Add a binding for x , then eval the inner body.

33

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Again the dRHS modifies the value of x, but using the new z and x.

34

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Bind d to 1 and evaluate x, which produces 19.

35

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

So the operands are 11and 19. The final result is 30.

36

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

The Point: Every evaluation of a binding expression creates a new
variable (box).

37

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

An example with a procedure in a procedure.

38

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

Eval RHS of the let expression...

39

x proc(z)let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

... which creates a closure, pointing to the current environment.

40

mk x proc(z)let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

To finish the let, the environment is extended with mk bound to the
closure, then evaluate the body.

41

mk x proc(z)let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

Eval RHS, a function call. Look up mk...

42

mk x proc(z)let d = set x = +(x,z) in x

x 10

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

It’s a closure, so extend the closure’s environment with 10, and eval the
closure’s body.

43

mk x proc(z)let d = set x = +(x,z) in x

x 10

z let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

The body is a proc expression, so we create another closure. Note that
the variable x is in the closure’s environment.

44

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

Bind f to the closure, and evaluate the body.

45

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

Eval RHS of the let expression, another call to mk. Do the same thing as
before...

46

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

Just as before, we extend mk’s environment with (a new) x and get a
closure, this time bound to g.

47

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

At this point, f and g have private versions of x.

48

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

let mk = proc(x) proc(z)
 let d = set x = +(x,z)
 in x
 in let f = (mk 10)
 in let g = (mk 12)
 in ...

The Point: Closures can capture generated variables, effectively getting
private state.

49

Summary:

Variables now denote locations, not values.

Lexical scope still works.

50

