
Mid-Term I

Mid-term I on Sept 22, in one week

In-class

Open-book

Open-notes

Closed-computer

HW 5 (Sept 17 - Sept 23) will be lighter than usual

1

Example Mid-Term

A pipe has a particular length, and it is made of some particular material, such as
copper, lead, or plastic

A pipeline is a sequence of pipes

Define data representations for pipes and pipelines

Implement the function total-length which takes a pipeline and returns its
total length

Implement the function modernize, which replaces every ’lead pipe in a
pipeline with a ’copper pipe of the same length

Actual exam may be shorter

Example solution on the web page

2

Outline

Sorting a List

Multiple Complex Inputs

Natural Numbers

3

Sorting Lists

Implement sort-list, which takes a list of numbers and returns a sorted list
of the same numbers

4

Outline

Sorting a List

Multiple Complex Inputs

Natural Numbers

5

Multiple Complex Arguments

Implement append-lists, which takes two lists of numbers and returns a
list with all of the numbers from the first list followed by all of the numbers
from the second list

Implement parallel-sum, which takes two lists of numbers (of the same
length) and returns a list of sums

Implement merge-lists, which takes two sorted lists of numbers and
returns a sorted list with all of the numbers

; append-lists : list-of-num list-of-num -> list-of-num

(append-lists empty empty) "should be" empty

(append-lists (list 1 3 5) (list 0 4 6))
"should be" (list 1 3 5 0 4 6)

6

Multiple Complex Arguments

Implement append-lists, which takes two lists of numbers and returns a
list with all of the numbers from the first list followed by all of the numbers
from the second list

Implement parallel-sum, which takes two lists of numbers (of the same
length) and returns a list of sums

Implement merge-lists, which takes two sorted lists of numbers and
returns a sorted list with all of the numbers

; parallel-sum : list-of-num list-of-num -> list-of-num

(parallel-sum empty empty) "should be" empty

(parallel-sum (list 1 3 5) (list 0 4 6))
"should be" (list 1 7 11)

7

Multiple Complex Arguments

Implement append-lists, which takes two lists of numbers and returns a
list with all of the numbers from the first list followed by all of the numbers
from the second list

Implement parallel-sum, which takes two lists of numbers (of the same
length) and returns a list of sums

Implement merge-lists, which takes two sorted lists of numbers and
returns a sorted list with all of the numbers

; merge-lists : list-of-num list-of-num -> list-of-num

(merge-lists empty empty) "should be" empty

(merge-lists (list 1 3 5) (list 0 4 6))
"should be" (list 0 1 3 4 5 6)

8

Multiple Complex Arguments

Implement append-lists, which takes two lists of numbers and returns a
list with all of the numbers from the first list followed by all of the numbers
from the second list

Implement parallel-sum, which takes two lists of numbers (of the same
length) and returns a list of sums

Implement merge-lists, which takes two sorted lists of numbers and
returns a sorted list with all of the numbers

; func : list-of-num list-of-num -> list-of-num

What template do we use for a function for two lists?

9

Multiple Complex Arguments

Sometimes a complex argument is "along for the ride", so use the
template for the other argument

(append-lists (list 1 3 5) (list 0 4 6))
"should be" (list 1 3 5 0 4 6)

(define (append-lists al bl)
 (cond
 [(empty? al) ...]
 [(cons? al)
 ... (first al)
 ... (append-lists (rest al) bl) ...]))

10

Multiple Complex Arguments

Sometimes the arguments are exactly the same shape, so use
essentially the one-argument template

(parallel-sum (list 1 3 5) (list 0 4 6))
"should be" (list 1 7 11)

(define (parallel-sum al bl)
 (cond
 [(empty? al) ...]
 [(cons? al)
 ... (first al) ... (first bl)
 ... (parallel-sum (rest al) (rest bl)) ...]))

11

Multiple Complex Arguments

Sometimes you have to consider all possible combinations, so use a
template that considers all combinations

(merge-lists (list 1 3 5) (list 0 4 6))
"should be" (list 0 1 3 4 5 6)

(define (merge-lists al bl)
 (cond
 [(and (empty? al) (empty? bl)) ...]
 [(and (empty? al) (cons? bl))
 ... (first bl) ... (merge-lists al (rest bl)) ...]

 [(and (cons? al) (empty? bl))
 ... (first al) ... (merge-lists (rest al) bl) ...]

 [(and (cons? al) (cons? bl))
 ... (first al) ... (first bl)
 ... (merge-lists (rest al) bl)
 ... (merge-lists al (rest bl))
 ... (merge-lists (rest al) (rest bl)) ...]))

12

Outline

Sorting a List

Multiple Complex Inputs

Natural Numbers

13

Numbers to Generate Lists

Implement create-list, which takes a non-negative integer n and
produces a list of numbers from n to 0, inclusive

; create-list : num -> list-of-num

(create-list 3) "should be" (list 3 2 1 0)

(create-list 0) "should be" (list 0)

14

Numbers to Generate Lists

Implement create-list, which takes a non-negative integer n and
produces a list of numbers from n to 0, inclusive

; create-list : num -> list-of-num

(create-list 3) "should be" (list 3 2 1 0)

(create-list 0) "should be" (list 0)

The template for num isn’t much help:

(define (func-for-num n)
 ...)

15

Numbers to Generate Lists

Implement create-list, which takes a non-negative integer n and
produces a list of numbers from n to 0, inclusive

; create-list : num -> list-of-num

(create-list 3) "should be" (list 3 2 1 0)

(create-list 0) "should be" (list 0)

The template for num isn’t much help:

(define (func-for-num n)
 ...)

But create-list actually takes a natural number

16

Natural Numbers

; A nat is either
; - 0
; - (add1 nat)

Examples:

0

(add1 0)

(add1 (add1 (add1 0)))

17

Natural Numbers

; A nat is either
; - 0
; - (add1 nat)

Examples:

0

(add1 0)

(add1 (add1 (add1 0)))

These examples have shortcuts

0, 1, and 3

but the long forms correspond to the template

18

Template for Natural Numbers

; A nat is either
; - 0
; - (add1 nat)

(define (func-for-nat n)
 (cond
 [(zero? n) ...]
 [else ... (func-for-nat (sub1 n)) ...]))

19

Template for Natural Numbers

; A nat is either
; - 0
; - (add1 nat)

(define (func-for-nat n)
 (cond
 [(zero? n) ...]
 [else ... (func-for-nat (sub1 n)) ...]))

(define (create-list n)
 (cond
 [(zero? n) (list 0)]
 [else (cons n (create-list (sub1 n)))]))

20

Generating the List the Other Way

Implement create-up-list, which takes a non-negative integer n and
produces a list of numbers from 0 to n inclusive

; create-up-list : num -> list-of-num

(create-list 3) "should be" (list 0 1 2 3)

(create-list 0) "should be" (list 0)

21

Generating the List the Other Way

Implement create-up-list, which takes a non-negative integer n and
produces a list of numbers from 0 to n inclusive

; create-up-list : num -> list-of-num

(create-list 3) "should be" (list 0 1 2 3)

(create-list 0) "should be" (list 0)

(define (create-up-list n)
 (cond
 [(zero? n) (list 0)]
 [else
 ... n
 ... (create-up-list (sub1 n)) ...]))

; uh oh... can’t cons onto recur result

22

Using Subtraction to Count Up

(define (create-up-list n)
 (create-up-to-n-list n n))

; Creates a list with d elements before n
(define (create-up-to-n-list d n)
 (cond
 [(zero? d) (list n)]
 [else
 (cons (- n d)
 (create-up-to-m-list (sub1 d) n))]))

23

Using Subtraction to Count Up

(define (create-up-list n)
 (create-up-to-n-list n n))

; Creates a list with d elements before n
(define (create-up-to-n-list d n)
 (cond
 [(zero? d) (list n)]
 [else
 (cons (- n d)
 (create-up-to-m-list (sub1 d) n))]))

... or replace d with m = (+ d n)

As d goes down, m goes up...

24

Counting Up Directly

(define (create-up-list n)
 (create-m-to-n-list 0 n))

; Creates a list from m to n
(define (create-m-to-n-list m n)
 (cond
 [(= m n) (list n)]
 [else
 (cons m
 (create-m-to-n-list (add1 m) n))]))

25

Counting Up Directly

(define (create-up-list n)
 (create-m-to-n-list 0 n))

; Creates a list from m to n
(define (create-m-to-n-list m n)
 (cond
 [(= m n) (list n)]
 [else
 (cons m
 (create-m-to-n-list (add1 m) n))]))

Use the stepper to see how it works

26

Counting Up Directly

(define (create-up-list n)
 (create-m-to-n-list 0 n))

; Creates a list from m to n
(define (create-m-to-n-list m n)
 (cond
 [(= m n) (list n)]
 [else
 (cons m
 (create-m-to-n-list (add1 m) n))]))

Use the stepper to see how it works

Similar ideas work for counting by fives, counting down to 20, etc.

27

