
Outline

Data Definitions and Templates

Syntax and Semantics

Defensive Programming

Data Definitions

Question 1:
Are both of the following data definitions ok?

; A w-grade is either
; - num
; - posn
; - empty

with ; A posn is
; (make-posn num num)

; A z-grade is either
; - num
; - (make-posn num num)
; - empty

Yes.

Data Definitions

Question 2:
Do w-grade and z-grade identify the same set of values?

; A w-grade is either
; - num
; - posn
; - empty

with ; A posn is
; (make-posn num num)

; A z-grade is either
; - num
; - (make-posn num num)
; - empty

Yes, every w-grade is a w-grade,
and every z-grade is a w-grade

Data Definitions

Question 3:
Are w-grade and w-grade the same data definition?

; A w-grade is either
; - num
; - posn
; - empty

with ; A posn is
; (make-posn num num)

; A z-grade is either
; - num
; - (make-posn num num)
; - empty

No, in the sense that they generate different templates

1-7

Data Definitions and Templates

The template depends on the static, textual content of a data definition,
only

; A w-grade is either
; - num
; - posn
; - empty

; A posn is
; (make-posn num num)

(define (func-for-w-grade w)
 (cond

 [(number? w) ...]
 [(posn? w) ... (func-for-posn w) ...]
 [(empty? w) ...]))

(define (func-for-posn p)
 ... (posn-x p) ... (posn-y p) ...)

; A z-grade is either
; - num
; - (make-posn num num)
; - empty

(define (func-for-z-grade z)
 (cond

 [(number? z) ...]
 [(posn? z) ... (posn-x z) ... (posn-y z) ...]
 [(empty? z) ...]))

Data Definitions and Templates

Why we treat the data definition statically to generate a template:

Provides well-defined, simple rules for generating a template

"Dynamic" coverage is difficult in general

Recall 3520 anecdote: thinking in terms of dynamic coverage ⇒
broken programs

Similar to the way that data choices affect modularity

Details of modularity are beyond the scope of this class, but we want
to build the right instincts

Outline

Data Definitions and Templates

Syntax and Semantics

Defensive Programming

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
 (/ x 2))
(f 10)

What’s the result of clicking Execute ?

5

8-12

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
 (/ x 0))
(f 10)

What’s the result of clicking Execute ?

/: divide by 0

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
 (/ x 0))

What’s the result of clicking Execute ?

Nothing (although f would produce an error if it were used)

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
 (/ x (0)))

What’s the result of clicking Execute ?

expected a name after an open parenthesis,
found a number even without using f

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
 (cond x))

What’s the result of clicking Execute ?

cond: expected a question--answer clause even without
using f

13-20

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
 (cond
 [false x]))

What’s the result of clicking Execute ?

Nothing

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
 (cond
 [false x]))

(f 10)

What’s the result of clicking Execute ?

cond: all questions were false

Errors in DrScheme

DrScheme complains about a function body

sometimes before the function is used

sometimes only when the function is called

Why?

Because some errors are syntax errors and some errors are
run-time errors

Syntax Errors

A syntax error is like a question that isn’t a well-formed sentence

f (x) = x + 0

DrScheme doesn’t understand this notation, just like...

"Parlez vous Francais?"
English-only speaker doesn’t understand this notation

(define (f x) (/ x (0)))

Parens around a zero make no sense to DrScheme, just like...

"Does rain dog cat?"
Not enough verbs for this to make sense in English

When DrScheme sees a syntax error, it refuses to evaluate

21-29

Run-Time Errors

A run-time error is like a well-formed question with no answer

(/ 12 0)

A clear request to DrScheme, but no answer, just like...

"Why are you wearing a green hat?"
There’s no answer if I’m wearing a blue hat

(cond [false 10])

There’s no reasonable choice for DrScheme, just like...

"If you can’t understand me, what’s your name?"
No one who understands the question should answer

DrScheme evaluates around run-time errors until forced to answer

The Difference between DrScheme and English

In a (good) programming language, all errors are well-defined, and the
rules are relatively simple

DrScheme has a simple, well-defined grammar, and deviations from the
grammar are syntax errors

The reduction rules for each construct and primitive operation are
well-defined, producing either a value or an error

Beginner Scheme Grammar

A <var> is a name, a <con> is a constant, and a <prm> is an operator
name

A <defn> is one of
(define (<var> <var> ... <var>) <exp>)

(define <var> <exp>)

(define-struct <var> (<var> ... <var>))

A <exp> is one of
<var>

<con>

(<prm> <exp> ... <exp>)

(<var> <exp> ... <exp>)

(cond [<exp> <exp>] ... [<exp> <exp>])

(cond [<exp> <exp>] ... [else <exp>])

(and <exp> ... <exp>)

(or <exp> ... <exp>)

Evaluation Rules: and/or

(and true) → true
(and true question ... question)

 → (and question ... question)
(and false question ... question) → false

(or false) → false
(or false question ... question)

 → (or question ... question)
(or true question ... question) → true

Note that

(and 7 false)

fits the grammar, but has no matching evaluation rule, so it produces a
run-time error

30-36

Outline

Data Definitions and Templates

Syntax and Semantics

Defensive Programming

Execution in DrScheme

Suppose that DrScheme’s definition window contains

; f : num -> num
(define (f x)
 (+ x 2))
(f ’apple)

What’s the result of clicking Execute ?

+: expects a <number>, given ’apple

But this is really a contract violation at the call to f

The implementor of f might want to clarify that this error is someone
else’s fault, not a bug in f

Defensive Programming

; f : num -> num
(define (real-f x)
 (+ x 2))
(define (f x)
 (cond
 [(number? x) (real-f x)]
 [else (error ’f "not a number")]))

(f ’apple)

f: not a number

The error function triggers a run-time error

You don’t have to program defensively in this course, but it sometimes
helps to defend against your own mistakes!

37-45

