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Data Definitions

Question 1:
Are both of the following data definitions ok?

; A w-grade is either
;  - num
;  - posn
;  - empty

with ; A posn is
;  (make-posn num num)

; A z-grade is either
;  - num
;  - (make-posn num num)
;  - empty

Yes.

Data Definitions

Question 2:
Do w-grade and z-grade identify the same set of values?

; A w-grade is either
;  - num
;  - posn
;  - empty

with ; A posn is
;  (make-posn num num)

; A z-grade is either
;  - num
;  - (make-posn num num)
;  - empty

Yes, every w-grade is a w-grade,
and every z-grade is a w-grade

Data Definitions

Question 3:
Are w-grade and w-grade the same data definition?

; A w-grade is either
;  - num
;  - posn
;  - empty

with ; A posn is
;  (make-posn num num)

; A z-grade is either
;  - num
;  - (make-posn num num)
;  - empty

No, in the sense that they generate different templates
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Data Definitions and Templates

The template depends on the static, textual content of a data definition,
only

; A w-grade is either
;  - num
;  - posn
;  - empty

; A posn is
;  (make-posn num num)

(define (func-for-w-grade w)
  (cond

 [(number? w) ...]
 [(posn? w) ... (func-for-posn w) ...]
 [(empty? w) ...]))

(define (func-for-posn p)
  ... (posn-x p) ... (posn-y p) ...)

; A z-grade is either
;  - num
;  - (make-posn num num)
;  - empty

(define (func-for-z-grade z)
  (cond

 [(number? z) ...]
 [(posn? z) ... (posn-x z) ... (posn-y z) ...]
 [(empty? z) ...]))

Data Definitions and Templates

Why we treat the data definition statically to generate a template:

Provides well-defined, simple rules for generating a template

"Dynamic" coverage is difficult in general

Recall 3520 anecdote: thinking in terms of dynamic coverage ⇒
broken programs

Similar to the way that data choices affect modularity

Details of modularity are beyond the scope of this class, but we want
to build the right instincts
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Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
  (/ x 2))
(f 10)

What’s the result of clicking Execute ?

5
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Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
  (/ x 0))
(f 10)

What’s the result of clicking Execute ?

/: divide by 0

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
  (/ x 0))

What’s the result of clicking Execute ?

Nothing (although f would produce an error if it were used)

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
  (/ x (0)))

What’s the result of clicking Execute ?

expected a name after an open parenthesis,
found a number  even without using f

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
  (cond x))

What’s the result of clicking Execute ?

cond: expected a question--answer clause  even without
using f
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Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
  (cond
  [false x]))

What’s the result of clicking Execute ?

Nothing

Execution in DrScheme

Suppose that DrScheme’s definition window contains

(define (f x)
  (cond
  [false x]))

(f 10)

What’s the result of clicking Execute ?

cond: all questions were false

Errors in DrScheme

DrScheme complains about a function body

sometimes before the function is used

sometimes only when the function is called

Why?

Because some errors are syntax errors and some errors are
run-time errors

Syntax Errors

A syntax error is like a question that isn’t a well-formed sentence

f (x) = x + 0

DrScheme doesn’t understand this notation, just like...

"Parlez vous Francais?"
English-only speaker doesn’t understand this notation

(define (f x) (/ x (0)))

Parens around a zero make no sense to DrScheme, just like...

"Does rain dog cat?"
Not enough verbs for this to make sense in English

When DrScheme sees a syntax error, it refuses to evaluate
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Run-Time Errors

A run-time error is like a well-formed question with no answer

(/ 12 0)

A clear request to DrScheme, but no answer, just like...

"Why are you wearing a green hat?"
There’s no answer if I’m wearing a blue hat

(cond [false 10])

There’s no reasonable choice for DrScheme, just like...

"If you can’t understand me, what’s your name?"
No one who understands the question should answer

DrScheme evaluates around run-time errors until forced to answer

The Difference between DrScheme and English

In a (good) programming language, all errors are well-defined, and the
rules are relatively simple

DrScheme has a simple, well-defined grammar, and deviations from the
grammar are syntax errors

The reduction rules for each construct and primitive operation are
well-defined, producing either a value or an error

Beginner Scheme Grammar

A <var> is a name, a <con> is a constant, and a <prm> is an operator
name

A <defn> is one of
(define (<var> <var> ... <var>) <exp>)

(define <var> <exp>)

(define-struct <var> (<var> ... <var>))

A <exp> is one of
<var>

<con>

(<prm> <exp> ... <exp>)

(<var> <exp> ... <exp>)

(cond [<exp> <exp>] ... [<exp> <exp>])

(cond [<exp> <exp>] ... [else <exp>])

(and <exp> ... <exp>)

(or <exp> ... <exp>)

Evaluation Rules: and/or

(and true)  →  true
(and true question ... question)

 →  (and question ... question)
(and false question ... question)  →  false

(or false)  →  false
(or false question ... question)

 →  (or question ... question)
(or true question ... question)  →  true

Note that

(and 7 false)

fits the grammar, but has no matching evaluation rule, so it produces a
run-time error
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Execution in DrScheme

Suppose that DrScheme’s definition window contains

; f : num -> num
(define (f x)
  (+ x 2))
(f ’apple)

What’s the result of clicking Execute ?

+: expects a <number>, given ’apple

But this is really a contract violation at the call to f

The implementor of f might want to clarify that this error is someone
else’s fault, not a bug in f

Defensive Programming

; f : num -> num
(define (real-f x)
  (+ x 2))
(define (f x)
  (cond
  [(number? x) (real-f x)]
  [else (error ’f "not a number")]))

(f ’apple)

f: not a number

The error function triggers a run-time error

You don’t have to program defensively in this course, but it sometimes
helps to defend against your own mistakes!
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