
Data So Far

Built-in atomic data: num, bool, sym, and image

Built-in compound data: posn

Programmer-defined compound data: define-struct plus a data
definition

Programmer-defined data with varieties: data definition with "either"

Today: more examples

Example 1: Managing Grades

Suppose that we need to manage exam grades

100 0 Rx

Record a grade for each student

Distinguish zero grade from missing the exam

We want to implement passed-exam?

Programming with Grades

Data

Use a number for a grade, obviously

For a non-grade, use the built-in constant empty

empty is something that you can use to represent nothing.

It’s not a num, bool, sym, image, or posn.

Programming with Grades

Data

; A grade is either
; - num
; - empty

Examples:

100

0

empty

1-6

Programming with Grades

Contract, Purpose, and Header

; passed-exam? : grade -> bool

Programming with Grades

Contract, Purpose, and Header

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

Programming with Grades

Contract, Purpose, and Header

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

(define (passed-exam? g)
 ...)

Programming with Grades

Examples

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

(define (passed-exam? g)
 ...)

(passed-exam? 100) "should be" true

(passed-exam? 0) "should be" false

(passed-exam? empty) "should be" false

7-10

Programming with Grades

Template

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

(define (passed-exam? g)
 (cond
 [(number? g) ...]
 [(empty? g) ...]))

varieties ⇒ cond

(passed-exam? 100) "should be" true

(passed-exam? 0) "should be" false

(passed-exam? empty) "should be" false

Programming with Grades

Body

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

;

;

;

;

(define (passed-exam? g)
 (cond
 [(number? g) ...]
 [(empty? g) ...]))

(define (passed-exam? g)
 (cond
 [(number? g) (>= g 70)]
 [(empty? g) false]))

(passed-exam? 100) "should be" true

(passed-exam? 0) "should be" false

(passed-exam? empty) "should be" false

Grades and Re-takes

Suppose that we allow one re-test per student

100 0 80 Rx

; A grade is either
; - num
; - posn
; - empty

Programming with Grades and Retests

Contract, Purpose, and Header

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

(define (passed-exam? g)
 ...)

11-15

Programming with Grades and Retests

Examples

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

(define (passed-exam? g)
 ...)

(passed-exam? 100) "should be" true

(passed-exam? (make-posn 0 80)) "should" true

(passed-exam? empty) "should be" false

Programming with Grades and Retests

Template

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

(define (passed-exam? g)
 (cond
 [(number? g) ...]
 [(posn? g) ...]
 [(empty? g) ...]))

varieties ⇒ cond

(passed-exam? 100) "should be" true

(passed-exam? (make-posn 0 80)) "should" true

(passed-exam? empty) "should be" false

Programming with Grades and Retests

Template

; passed-exam? : grade -> bool

; Determines whether g is 70 or better

(define (passed-exam? g)
 (cond
 [(number? g) ...]
 [(posn? g) ... (posn-passed-exam? g) ...]
 [(empty? g) ...]))

data-defn reference ⇒ template reference

(passed-exam? 100) "should be" true

(passed-exam? (make-posn 0 80)) "should" true

(passed-exam? empty) "should be" false

Complete Function

; passed-exam? : grade -> bool
(define (passed-exam? g)
 (cond
 [(number? g) (>= g 70)]
 [(posn? g) (posn-passed-exam? g)]
 [(empty? g) false]))

; posn-passed-exam? : posn -> bool
(define (posn-passed-exam? p)
 (or (>= (posn-x p) 70)
 (>= (posn-y p) 70)))

Plus tests and templates...

16-19

Shapes of Data and Functions

As always, the shape of the function matches the shape of the data

; A grade is either
; - num
; - posn
; - empty

; A posn is

; (make-posn num num)

(define (func-for-grade g)
 (cond
 [(number? g) ...]
 [(posn? g) ... (func-for-posn g) ...]
 [(empty? g) ...]))

(define (func-for-posn p)
 ... (posn-x p) ... (posn-y p) ..)

Example #2: Day Planning

Suppose that we need to manage day-planner entries

@lab

@office

Each day-plan is either empty or an
appointment with person and place

Implement close-blinds?

for Adam’s sensitive eyes during
office meetings

Programming with Day-Plans

Data

; An day-plan is either
; - empty
; - (make-appt image sym)

(define-struct appt (who where))

Examples:

empty

(make-appt ’office)

Programming with Day-Plans

Contract, Purpose, and Header

; close-blinds? : day-plan -> bool

20-24

Programming with Day-Plans

Contract, Purpose, and Header

; close-blinds? : day-plan -> bool

; Determines whether dp is a meeting
; with Adam at office

Programming with Day-Plans

Contract, Purpose, and Header

; close-blinds? : day-plan -> bool

; Determines whether dp is a meeting
; with Adam at office

(define (close-blinds? dp)
 ...)

Programming with Day-Plans

Examples

; close-blinds? : day-plan -> bool

; Determines whether dp is a meeting
; with Adam at office

(define (close-blinds? dp)
 ...)

(close-blinds? empty) "should be" false

(close-blinds? (make-appt ’office))

"should be" true

(close-blinds? (make-appt ’lab))

"should be" false

Programming with Day-Plans

Template

; close-blinds? : day-plan -> bool

; Determines whether dp is a meeting
; with Adam at office

(define (close-blinds? dp)
 ...)

; An day-plan is either
; - empty
; - (make-appt image sym)

25-28

Programming with Day-Plans

Template

; close-blinds? : day-plan -> bool

; Determines whether dp is a meeting
; with Adam at office

(define (close-blinds? dp)
 (cond
 [(empty? dp) ...]
 [(appt? dp) ...]))

varieties ⇒ cond

; An day-plan is either
; - empty
; - (make-appt image sym)

Programming with Day-Plans

Template

; close-blinds? : day-plan -> bool

; Determines whether dp is a meeting
; with Adam at office

(define (close-blinds? dp)
 (cond
 [(empty? dp) ...]
 [(appt? dp)
 ... (appt-who dp)
 ... (appt-where dp) ...]))

compound data ⇒ extract parts

; An day-plan is either
; - empty
; - (make-appt image sym)

Programming with Day-Plans

Body

; close-blinds? : day-plan -> bool

; Determines whether dp is a meeting
; with Adam at office

(define (close-blinds? dp)
 (cond
 [(empty? dp) false]
 [(appt? dp)
 (and

 (image=? (appt-who dp))
 (symbol=? (appt-where dp) ’office))]))

Shapes of Data and Functions

As always, the shape of the function matches the shape of the data

; An day-plan is either
; - empty
; - (make-appt image sym)

(define (close-blinds? dp)
 (cond
 [(empty? dp) ...]
 [(appt? dp)
 ... (appt-who dp)
 ... (appt-where dp) ...]))

29-32

Summary

Today’s examples show:

A data definition with variants need not involve structure choices

A data definition with variants can include make-something directly

... usually when the structure by itself isn’t useful

Implementation shape still matches the data shape

No recipe changes!

33-34

