
Final Exam

Monday, December 8 1:00-3:00

open book, open notes, closed computer

comprehensive covers the entire semester

This Course was About...

Fundamentals of programming

From specification to implementation

Software engineering principles

This Course was...

Not about...

A particular programming language (e.g., Java, C++, Scheme)

A particular programming tool (e.g., gcc, DrScheme)

Specific libraries or protocols (e.g., Gtk, XML, HTTP)

How programs get translated into electronic signals

Theme 1: Data Structures

Atomic data

num

1

string

"apple"

1-4

Theme 1: Data Structures

Compound data

; A posn is

; (make-posn num num)

(make-posn 1 2)

class Snake {

 String name;

 double weight;

 String food;

 ...

}

new Snake("slinky", 10, "rats")

Theme 1: Data Structures

Inductively defined data

Lists

; A list-of-num is either

; - empty

; - (cons num list-of-num)

(cons 1 (cons 2 empty))

Theme 1: Data Structures

Inductively defined data

Lists

abstract class Pizza { ... }

class Crust extends Pizza {

 boolean wheat;

 ...

}

class topping extends Pizza {

 String top;

 Pizza bottom;

 ...

}

new Topping("tomato", 2, new Crust(false))

Theme 1: Data Structures

Trees

; A rumor-mill is either

; - empty

; - (make-gossip string rumor-mill rumor-mill)

(make-gossip "Amir"

 (make-gossip "Joe"

 empty

 empty)

 (make-gossip "Linsey"

 empty

 empty))

5-8

Theme 1: Data Structures

And more:

; A dir is

; (make-dir sym lofd)

; A file is

; (make-file sym num)

; A lofd is either

; - empty

; - (cons file lofd)

; - (cons dir lofd)

(make-dir ’tmp

 (list (make-file ’preview.ps 10)

 (make-dir ’build

 (list

 (make-file ’x.c 30)

 (make-file ’a.out 10)))))

Theme 1: Data Structures

And more:

class Room {

 Door left;

 Door right;

 ... }

abstract class Door { ... }

class Escape extends Door { ... }

class Into extends Door {

 Room next;

 ...

}

...

new Into(new Room(new Escape("mars"),

 new Escape("venus")))

Theme 2: Data Drives Design

Data

Understand the input data

Contract, Purpose, and Header

Describe (but don’t write) the function

Examples

Show what will happen when the function is done

Template

Set up the body based on the input data (and only the input)

Body

The most creative step: implement the function body

Test

Run the examples

Theme 2: Data Drives Design

The template is a pivotal implementation step:

Programs that match the shape of the data tend to work, and they can
be understood by others

Programs that do not match the shape of the data tend to fail in
incomprehensible ways

; A list-of-num is either

; - empty

; - (cons num list-of-num)

; func : list-of-num -> ...

(define (func l)

 (cond

 [(empty? l) ...]

 [else (first l) ... (func (rest l)) ...]))

9-13

Theme 2: Data Drives Design

; A dir is

; (make-dir sym lofd)

; A file is

; (make-file sym num)

; A lofd is either

; - empty

; - (cons file lofd)

; - (cons dir lofd)

; dir-func : dir -> ...

(define (dir-func d)

 ... (dir-name d)

 ... (lofd-func (dir-content d)) ...)

; file-func : file -> ...

(define (file-func f)

 ... (file-name f) ... (file-size f))

; lofd-func : lofd -> ...

(define (lofd-func l)

 (cond

 [(empty? l) ...]

 [(file? (first l))

 ... (file-func (first l))

 ... (lofd-func (rest l))]

 [(dir? (first l))

 ... (dir-func (first l))

 ... (lofd-func (rest l))]))

Theme 2: Data Drives Design

class Room {

 Door left;

 Door right; ...

 Path escapePath(Person p) {

 ... left.escapePath(p)

 ... right.escapePath(p) ...

 }

}

abstract class Door {

 abstract Path escapePath(Person p);

}

class Escape extends Door { ...

 Path escapePath(Person p) { ... }

}

class Into extends Door {

 Room next; ...

 Path escapePath(Person p) {

 ... next.escapePath(p) ...

 }

}

Theme 2: Data Drives Design

Good Java style essentially forces you to follow the template

Following the template essentially forces good Java style

Theme 3: Contracts

A contract specifies, in advance

Obligations of a producer

Restrictions for a consumer

; disk-usage : dir -> num

(define (disk-usage d)

 (foldr (lambda (f n)

 (+ n (file-size f)))

 0

 (dir-content d)))

Producer error: disk-usage should work on any dir

14-19

Theme 3: Contracts

A contract specifies, in advance

Obligations of a producer

Restrictions for a consumer

; disk-usage : dir -> num

...

(disk-usage (make-snake ’Slinky 10 ’rats))

Consumer error: disk-usage accepts only dirs

Theme 3: Contracts

A contract identifies the relevant data definition

for examples

for the implementation (template)

for testing helps ensure coverage

; disk-usage : dir -> num

(define (disk-usage d)

 ... (dir-name d)

 ... (lofd-usage (dir-content d)) ...)

...

(disk-usage (make-dir ’home empty))

"should be" 0

Theme 3: Contracts

A contract identifies the relevant data definition

for examples

for the implementation (template)

for testing helps ensure coverage

Incorrect and abused contracts were the primary source of homework
difficulties

Theme 4: Reuse

Armed with data definitions and templates, you can write most things from
scratch...

...but you shouldn’t

If nothing else, cut and paste (or deja vu) should trigger reuse

20-24

Theme 4: Reuse

Data Representation and Contract

Examples

Maybe Abstract

Use Existing

Template

Body

Trivial Cases

Recur on Smaller

Test

Theme 4: Reuse

Reuse from abstraction:

; sum : list-of-num -> num

(define (sum l)

 (cond

 [(empty? l) 0]

 [(cons? l)

 (+ (first l)

 (sum (rest l)))]))

; product : list-of-num -> num

(define (product l)

 (cond

 [(empty? l) 1]

 [(cons? l)

 (* (first l)

 (product (rest l)))]))

;

;

combine-nums : list-of-num

 (num num -> num) -> num

(define (combine-nums l base-n COMB)

 (cond

 [(empty? l) base-n]

 [(cons? l)

 (COMB (first l)

 (combine-nums (rest l)

 base-n

 COMB))]))

; sum : list-of-num -> num

(define (sum l)

 (combine-nums l 0 +))

; product : list-of-num -> num

(define (product l)

 (combine-nums l 1 *))

Theme 4: Reuse

Reuse from existing abstractions:

; sum : list-of-num -> num

(define (sum l)

 (foldr + l 0))

; product : list-of-num -> num

(define (product l)

 (foldr * l 1))

Theme 4: Reuse

Reuse from existing abstractions:

int sum(List l) {

 Enumerator e = l.elements();

 int s = 0;

 while (e.hasMoreElements()) {

 Integer i = (Integer)e.nextElement();

 s = s + i.intValue();

 }

 return s;

}

25-28

Theme 4: Reuse

Reuse by class extension:

class Into extends Door {

 ...

 Path escapePath(Person p) {

 return this.next.escapePath(p);

 }

}

class Short extends Into {

 ...

 Path escapePath(Person p) {

 if (p.height <= this.height)

 return super.escapePath(p);

 else

 return new Fail();

 }

 // everything else is like Into

}

Theme 5: Creativity

A good design process focuses your energy on two deeply creative
problems:

choosing and defining a data representation

implementing the body of a function/method

Theme 5: Creativity

Problem: choose a data definition for mazes

class Room {

 Door left;

 Door right;

 ... }

abstract class Door { ... }

class Escape extends Door { ... }

class Into extends Door {

 Room next;

 ...

}

...

Theme 5: Creativity

Problem: combine images to check for disguises

;

;

same-person-maybe-disguised? :

image image image image -> bool

(define (same-person-maybe-disguised? p p2 g b)

 (or (image=? p p2)

 (wearing-glasses? p p2 g)

 (wearing-beard? p p2 b)

 (image=? p (add-beard (add-glasses p2 g) b))))

Which part was automatic from contracts?
Which part required creativity?

29-35

Theme 5: Creativity

Problem: produce an image’s negative

; photo-negative : image -> image

(define (photo-negative i)

 (color-list->image

 (negate-colors (image->color-list i))

 (image-width i)

 (image-height i)))

Which part was automatic from contracts?
Which part required creativity?

Theme 5: Creativity

Data Representation and Contract

Examples

Maybe Abstract

Use Existing

Template

Body

Trivial Cases

Recur on Smaller

Test

Theme 6: Programming Tools

Structures

Functions

Classes

Methods

Contracts in comments and code

Local declarations

Assignment

Computational complexity

Themes in the Final Exam

Expect the final exam to hit all of these themes:

Data Structures

Data Drives Design

Contracts

Reuse

Creativity

Programming Tools

More details next time

36-41

