
Java’s Built-in Data Definitions

int

1 5999 -10

double

1.1 5999.33 -10.01

boolean

true false

String

"hello" "See you later!"

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

class starts a
data definition, or
a
class declaration
in Java
terminology

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Next is the name
for the data
definition; by
convention, the
name is
captalized

1-4

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Put { after the
name

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

For each part of
the compound
value, write type
then name then ;,
one line for each
part; this is a field

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

After the parts, write the defined
name again; this starts the
constructor

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Then a (

5-8

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Write each field
again, but this
time separate with
, these are the
constructor arguments

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Then a)

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Then a {

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}

Each field, one
more time... this
then . then name
then = then name
then ;

9-12

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

}
Closing } for the constructor

Compound Data in Java

Beginner Scheme:

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Beginner Java:

class Snake {

 String name;

 double weight;

 String food;

 Snake(String name, double weight, String food) {

 this.name = name;

 this.weight = weight;

 this.food = food;

 }

} Closing } for the class declaration

Instances of Compound Data Types

Beginner Scheme:

(make-snake ’Slinky 12 ’rats)

(make-snake ’Slimey 5 ’grass)

Beginner Java:

new Snake("Slinky", 12, "rats")

new Snake("Slimey", 5, "grass")

Instances of Compound Data Types

Beginner Scheme:

(make-snake ’Slinky 12 ’rats)

(make-snake ’Slimey 5 ’grass)

Beginner Java:

new Snake("Slinky", 12, "rats")

new Snake("Slimey", 5, "grass")

new starts an
instance (a value)
of a class

13-16

Instances of Compound Data Types

Beginner Scheme:

(make-snake ’Slinky 12 ’rats)

(make-snake ’Slimey 5 ’grass)

Beginner Java:

new Snake("Slinky", 12, "rats")

new Snake("Slimey", 5, "grass")

Next is the class
name

Instances of Compound Data Types

Beginner Scheme:

(make-snake ’Slinky 12 ’rats)

(make-snake ’Slimey 5 ’grass)

Beginner Java:

new Snake("Slinky", 12, "rats")

new Snake("Slimey", 5, "grass")

Then (

Instances of Compound Data Types

Beginner Scheme:

(make-snake ’Slinky 12 ’rats)

(make-snake ’Slimey 5 ’grass)

Beginner Java:

new Snake("Slinky", 12, "rats")

new Snake("Slimey", 5, "grass")

Then field values
separated by ,

Instances of Compound Data Types

Beginner Scheme:

(make-snake ’Slinky 12 ’rats)

(make-snake ’Slimey 5 ’grass)

Beginner Java:

new Snake("Slinky", 12, "rats")

new Snake("Slimey", 5, "grass")

Then)

17-20

Armadillos

class Dillo {

 double weight;

 boolean alive;

 Dillo(double weight, boolean alive) {

 this.weight = weight;

 this.alive = alive;

 }

}

new Dillo(2, true)

new Dillo(3, false)

Posns

class Posn {

 int x;

 int y;

 Posn(int x, int y) {

 this.x = x;

 this.y = y;

 }

}

new Posn(0, 0)

new Posn(1, -2)

Ants

class Ant {

 double weight;

 Posn loc;

 Ant(double weight, Posn loc) {

 this.weight = weight;

 this.loc = loc;

 }

}

new Ant(0.0001, new Posn(0, 0))

new Ant(0.0002, new Posn(1, -2))

Data with Variants

Beginner Scheme: ; An animal is either

; - snake

; - dillo

; - ant

Beginner Java: abstract class Animal {

}

class Snake extends Animal {

 ... as before ...
}

class Dillo extends Animal {

 ... as before ...
}

class Ant extends Animal {

 ... as before ...
}

21-24

Data with Variants

Beginner Scheme: ; An animal is either

; - snake

; - dillo

; - ant

Beginner Java: abstract class Animal {

}

class Snake extends Animal {

 ... as before ...
}

class Dillo extends Animal {

 ... as before ...
}

class Ant extends Animal {

 ... as before ...
}

abstract class
for a data
definition with
variants

Data with Variants

Beginner Scheme: ; An animal is either

; - snake

; - dillo

; - ant

Beginner Java: abstract class Animal {

}

class Snake extends Animal {

 ... as before ...
}

class Dillo extends Animal {

 ... as before ...
}

class Ant extends Animal {

 ... as before ...
}

No fields and no
constructor when
a class merely
groups variants

Data with Variants

Beginner Scheme: ; An animal is either

; - snake

; - dillo

; - ant

Beginner Java: abstract class Animal {

}

class Snake extends Animal {

 ... as before ...
}

class Dillo extends Animal {

 ... as before ...
}

class Ant extends Animal {

 ... as before ...
}

Change the class for
each variant by adding
extends then the
grouping class name, all
before {

Data with Variants

Beginner Scheme: ; An animal is either

; - snake

; - dillo

; - ant

Beginner Java: abstract class Animal {

}

class Snake extends Animal {

 ... as before ...
}

class Dillo extends Animal {

 ... as before ...
}

class Ant extends Animal {

 ... as before ...
}

Nothing else
changes

25-28

Variants in Java

A data definition with variants must refer only to other data definitions
(which are not built in)

; A grade is either

; - false

; - num

⇒ ; A grade is either

; - no-grade

; - num-grade

; A no-grade is

; (make-no-grade)

(define-struct no-grade ())

; A num-grade is

; (make-num-grade num)

(define-struct num-grade (n))

A data definition can be a variant in at most one other data definition

29-33

